中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

淮北平原农用地土壤钼测定与分布特征及影响因素

李朋飞, 吴衡, 管后春, 徐锦龙, 王耀, 沈仕豪, 汪雅菲, 葛海影. 淮北平原农用地土壤钼测定与分布特征及影响因素[J]. 岩矿测试, 2023, 42(2): 361-370. doi: 10.15898/j.cnki.11-2131/td.202202110020
引用本文: 李朋飞, 吴衡, 管后春, 徐锦龙, 王耀, 沈仕豪, 汪雅菲, 葛海影. 淮北平原农用地土壤钼测定与分布特征及影响因素[J]. 岩矿测试, 2023, 42(2): 361-370. doi: 10.15898/j.cnki.11-2131/td.202202110020
LI Pengfei, WU Heng, GUAN Houchun, XU Jinlong, WANG Yao, SHEN Shihao, WANG Yafei, GE Haiying. Molybdenum Distribution Characteristics in Soil of Agricultural Land in Huaibei Plain of Anhui Province and Influencing Factors[J]. Rock and Mineral Analysis, 2023, 42(2): 361-370. doi: 10.15898/j.cnki.11-2131/td.202202110020
Citation: LI Pengfei, WU Heng, GUAN Houchun, XU Jinlong, WANG Yao, SHEN Shihao, WANG Yafei, GE Haiying. Molybdenum Distribution Characteristics in Soil of Agricultural Land in Huaibei Plain of Anhui Province and Influencing Factors[J]. Rock and Mineral Analysis, 2023, 42(2): 361-370. doi: 10.15898/j.cnki.11-2131/td.202202110020

淮北平原农用地土壤钼测定与分布特征及影响因素

  • 基金项目:
    中国地质调查局地质调查项目“安徽淮北—亳州地区多目标地球化学调查”(12120113000300);安徽省公益性地质工作项目“1∶5万楚店集、高炉集、江集和望町集幅覆盖区综合地质调查”(2016-g-3-32)
详细信息
    作者简介: 李朋飞,高级工程师,主要从事环境地球化学调查及研究。E-mail: lipengfei1822@163.com
  • 中图分类号: S151.93;O657.63;O657.31

Molybdenum Distribution Characteristics in Soil of Agricultural Land in Huaibei Plain of Anhui Province and Influencing Factors

  • 钼作为植物固氮酶、硝酸还原酶与人体多种酶辅基的重要组成成分,对维持植物生长发育和人体健康具有重要作用。研究农用地土壤钼含量分布及其影响因素对土壤科学施肥、土壤钼有效性提升具有重要的现实意义。安徽省淮北平原位于中国华北平原缺钼土壤区,目前缺乏对该地区土壤钼含量及其驱动因素的系统研究。本文以淮北平原典型土壤区511km2为研究区域,按照1件样品/km2采集0~20cm深度表层土壤样品,采用电感耦合等离子体质谱(ICP-MS)、电感耦合等离子体发射光谱(ICP-OES)等方法测定表层土壤中全钼、有效钼、TFe2O3、Al2O3、SiO2、P、Mn及有机质含量与pH值等指标含量;利用统计学、相关性分析等方法系统研究土壤中全钼、有效钼含量和分布特征,并对制约土壤中全钼、有效钼分布特征的主要因素进行了探讨。结果表明:①砂姜黑土中全钼和有效钼含量以缺乏为主,全钼、有效钼缺乏土壤比例分别高达93.3%、87.3%;全钼含量主要受土壤pH值、Mn、TFe2O3、P及硅铝率(即土壤中氧化硅和氧化铝含量的比值)的影响,pH值、有机质为制约砂姜黑土有效钼含量较低的重要因素, pH值、有机质与有效钼之间的相关系数分别为-0.310、0.117;②潮土中全钼较缺乏、中等、较丰富土壤比例分别为31.2%、28.4%、21.1%,全钼含量主要受Mn、P、有机质的影响;有效钼缺乏土壤比例为86.2%,全钼含量低是有效钼含量缺乏的主控因素。综上所述,研究区土壤中有效钼含量总体缺乏,建议当地综合考虑土壤有效钼含量及其主要制约因素进行科学施肥,针对砂姜黑土应注重施用有机肥,潮土应合理施用钼肥。

  • 加载中
  • 图 1  研究区地理位置及采样点位图

    Figure 1. 

    图 2  研究区土壤全钼、有效钼空间分布

    Figure 2. 

    图 3  (a) 潮土与(b)砂姜黑土全钼、有效钼丰缺比例

    Figure 3. 

    表 1  土壤中全钼、有效钼等指标分析测试的检出限

    Table 1.  Detection limit of total molybdenum, available molybdenum and other indicators in soil

    分析指标 检出限 分析指标 检出限
    全钼 0.2mg/kg SiO2 0.05%
    有效钼 0.005mg/kg P 8mg/kg
    TFe2O3 0.05% Mn 5mg/kg
    Al2O3 0.05% pH 0.1
    下载: 导出CSV

    表 2  研究区土壤全钼、有效钼及其相关理化指标含量参数

    Table 2.  Contents of the total molybdenum and available molybdenum and its related physical and chemical indicators in soil of the study area

    成土母质 土壤类型 参数 全钼
    (mg/kg)
    有效钼
    (mg/kg)
    钼有效度
    (%)
    相关土壤理化性状指标
    P
    (mg/kg)
    TFe2O3
    (mg/kg)
    Mn
    (mg/kg)
    有机质
    (%)
    pH值 硅铝率
    全区
    (N=511)
    最小值 0.33 0.025 3.68 352 4.11 301 0.43 4.90 3.76
    最大值 0.99 0.680 88.25 1591 6.20 1096 3.24 8.51 5.70
    算术平均值 0.46 0.072 15.94 741 4.81 634 1.76 - 4.88
    中位数 0.43 0.061 13.64 699 4.69 624 1.76 7.31 4.97
    标准离差 0.09 0.05 8.81 211.96 0.45 134.57 0.39 1.04 0.41
    变异系数 0.21 0.64 0.55 0.29 0.09 0.21 0.22 0.15 0.08
    黄土母质
    (N=402)
    砂姜黑土 最小值 0.33 0.026 5.06 352 4.11 301 0.48 4.90 4.34
    最大值 0.87 0.680 88.25 1276 5.40 1096 3.24 8.51 5.70
    算术平均值 0.42 0.070 16.51 671 4.65 592 1.72 - 5.03
    中位数 0.42 0.057 13.64 648 4.60 600 1.71 6.81 5.04
    标准离差 0.05 0.05 9.56 156.14 0.26 108.85 0.39 1.00 0.27
    变异系数 0.12 0.71 0.58 0.23 0.06 0.18 0.23 0.15 0.05
    河流冲积物
    (N=109)
    潮土 最小值 0.34 0.025 3.68 612 4.73 511 0.43 7.04 3.76
    最大值 0.99 0.151 26.84 1591 6.20 974 2.59 8.45 4.98
    算术平均值 0.57 0.077 13.84 998 5.42 786 1.90 - 4.35
    中位数 0.56 0.074 13.59 989 5.38 800 1.90 8.15 4.34
    标准离差 0.12 0.02 4.61 191.97 0.49 108.87 0.38 0.16 0.38
    变异系数 0.21 0.31 0.33 0.19 0.09 0.14 0.20 0.02 0.09
    注:硅铝率为w(SiO2)/w(Al2O3),钼的有效度指土壤中有效钼占全钼含量的比例。
    下载: 导出CSV

    表 3  土壤中全钼、有效钼等指标含量的相关系数

    Table 3.  Correlation coefficients between total molybdenum, available molybdenum and other physical and chemical indexes in soil

    土壤类型 指标 全钼 有效钼 钼的有效度 P TFe2O3 Mn 有机质 硅铝率 pH
    潮土
    (N=109)
    全钼 1.000
    有效钼 0.166** 1.000
    钼的有效度 -0.478** 0.751** 1.000
    P 0.330** 0.090 -0.184 1.000
    TFe2O3 0.031 -0.123 -0.157 -0.096 1.000
    Mn 0.611** -0.160 -0.549** 0.245* 0.415** 1.000
    有机质 0.205* -0.104 -0.223* 0.450** 0.237* 0.450** 1.000
    硅铝率 -0.082 0.090 0.164 0.046 -0.984** -0.431** -0.239* 1.000
    pH 0.194* 0.000 -0.234* -0.023 0.125 0.074 -0.303** -0.169 1.000
    砂姜黑土
    (N=402)
    全钼 1.000
    有效钼 0.067 1.000
    钼的有效度 -0.128* 0.965** 1.000
    P 0.153** -0.075 -0.075 1.000
    TFe2O3 0.189** -0.058 -0.095 0.372** 1.000
    Mn 0.213** -0.031 -0.058 0.360** 0.172** 1.000
    有机质 0.084 0.117* 0.135** 0.478** 0.082 -0.013 1.000
    硅铝率 -0.199** 0.060 0.099* -0.338** -0.962** -0.087 -0.112* 1.000
    pH 0.268** -0.310** -0.373** 0.247** 0.407** 0.353** -0.382** -0.382** 1.000
    注:“**”表示在0.01水平(双侧)上显著相关,“*”表示在0.05水平(双侧)上显著相关。
    下载: 导出CSV
  • [1]

    毛香菊, 刘璐, 程新涛, 等. 河南新密典型富硒区土壤Se元素地球化学特征及空间分布规律[J]. 地质通报, 2021, 40(10): 1664-1670. doi: 10.12097/j.issn.1671-2552.2021.10.008

    Mao X J, Liu L, Cheng X T, et al. Geochemistry and spatial distribution of Se element in soils of typical Se-rich areas in Xinmi, Henan Province[J]. Geological Bulletin of China, 2021, 40(10): 1664-1670. doi: 10.12097/j.issn.1671-2552.2021.10.008

    [2]

    周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201911140158

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201911140158

    [3]

    成晓梦, 孙彬彬, 贺灵, 等. 四川省沐川县西部地区土壤硒含量特征及影响因素[J]. 岩矿测试, 2021, 40(6): 808-819. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202106080072

    Cheng X M, Sun B B, He L, et al. Content characteristics and influencing factors of soil selenium in western Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 808-819. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202106080072

    [4]

    廖启林, 崔晓丹, 黄顺生, 等. 江苏富硒土壤元素地球化学特征及主要来源[J]. 中国地质, 2020, 47(6): 1813-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006018.htm

    Liao Q L, Cui X D, Huang S S, et al. Elemental geochemistry of selenium-enriched soil and its main origin in Jiangsu Province[J]. China Geology, 2020, 47(6): 1813-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006018.htm

    [5]

    刘冰权, 沙珉, 谢长瑜, 等. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素[J]. 岩矿测试, 2021, 40(5): 740-750. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202107230082

    Liu B Q, Sha M, Xie C Y, et al. Geochemical characteristics of soil selenium and influencing factors of selenium bioavailability in rice root soils in Qingxi area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202107230082

    [6]

    李春霞. 锰、铁和钼肥处理种子与叶面喷施对小麦生长与吸收的影响及其机制[D]. 杨凌: 西北农林科技大学, 2019.

    Li C X. Effects and mechanism of seed soaking and foliar spraying of manganese, iron and molybdenum on growth and absorb of wheat[D]. Yangling: Northwest A&F University, 2019.

    [7]

    Syaifudin M. 不同钼源对油菜和冬小麦光合作用和花粉发育的影响[D]. 武汉: 华中农业大学, 2020.

    Syaifudin M. Effect of different sources of molybdenum on photosynthesis and pollen development of oilrape and winter wheat[D]. Wuhan: Huazhong Agricultural University, 2020.

    [8]

    徐守俊. 大豆钼高效品种筛选及其高效吸收利用钼的机制研究[D]. 武汉: 华中农业大学, 2018.

    Xu S J. Screening of molybdenum-efficiencient soybean(Glycine max)cultivar and its mechanism on high efficiency of Mo uptake and utilization[D]. Wuhan: Huazhong Agricultural University, 2018.

    [9]

    张俊, 郝西, 刘娟, 等. 钼肥拌种量对旱薄地花生发育及氮素积累的影响[J]. 河南农业科学, 2021, 50(3): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY202103009.htm

    Zhang J, Hao X, Liu J, et al. Effect of seed dressing with ammonium molybdate on development and nitrogen accumulation of peanut in poor dry land[J]. Journal of Henan Agricultural Sciences, 2021, 50(3): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY202103009.htm

    [10]

    王佳炜, 程楠, 王训. 微量元素钼的生理作用及其对机体功能的影响研究进展[J]. 医学综述, 2013, 19(19): 3460-3462. doi: 10.3969/j.issn.1006-2084.2013.19.002

    Wang J W, Cheng N, Wang X, et al. Research progress in physiological role of trace elements molybdenum and its influence on human body[J]. Medical Recapitulate, 2013, 19(19): 3460-3462. doi: 10.3969/j.issn.1006-2084.2013.19.002

    [11]

    熊燕, 宁增平, 刘意章, 等. 西南燃煤型地方病区煤炭和土壤中氟、钼的地球化学行为[J]. 地球与环境, 2021, 49(5): 570-577. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202105012.htm

    Xiong Y, Ning Z P, Liu Y Z, et al. Geochemical behavior of fluorine and molybdenum in coals and soils in coal-burning related endemic area in southwest China[J]. Earth and Environment, 2021, 49(5): 570-577. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202105012.htm

    [12]

    刘春奎. 钼锌配施对冬小麦的作用及其机制研究[D]. 武汉: 华中农业大学, 2019.

    Liu C K. Study on effect of molybdenum and zinc combination on winter wheat and its mechanism[J]. Wuhan: Huazhong Agricultural University, 2019.

    [13]

    王佳炜, 王训, 程楠. 微量元素钼的代谢与人体健康[J]. 中华临床营养杂志, 2013, 21(4): 241-245. doi: 10.3760/cma.j.issn.1674-635X.2013.04.009

    Wang J W, Wang X, Cheng N. Metabolism of molybdenum and its role in human health[J]. Chinese Journal of Clinical Nutrition, 2013, 21(4): 241-245. doi: 10.3760/cma.j.issn.1674-635X.2013.04.009

    [14]

    马彦平, 石磊, 何源. 微量元素铁、锰、硼、锌、铜、钼营养与人体健康[J]. 肥料与健康, 2020, 47(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KDHL202005004.htm

    Ma Y P, Shi L, He Y. Trace elements iron, manganese, boron, zinc, copper, molybdenum and human health[J]. Fertilizer & Health, 2020, 47(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KDHL202005004.htm

    [15]

    孙健慧. 钼与人体健康[J]. 中国钼业, 2007, 31(3): 52-53. doi: 10.3969/j.issn.1006-2602.2007.03.015

    Sun J H. Relationship between molybdenum in food and human health[J]. China Molybdenum Industry, 2007, 31(3): 52-53. doi: 10.3969/j.issn.1006-2602.2007.03.015

    [16]

    刘铮, 朱其清, 徐俊祥, 等. 中国土壤中钼的含量与分布规律[J]. 环境科学学报, 1990, 10(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX199002001.htm

    Liu Z, Zhu Q Q, Xu J X, et al. Content and distribution of molybdenum in soils of China[J]. Acta Scientiae Circumstantiae, 1990, 10(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX199002001.htm

    [17]

    彭月月, 余雪莲, 李启权, 等. 川西南高海拔烟区土壤微量元素空间分布特征及影响因素[J]. 中国烟草科学, 2018, 39(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201803006.htm

    Peng Y Y, Yu X L, Li Q Q, et al. Spatial distribution and influencing factors of soil available microelements in high altitude tobacco planting areas in southwest Sichuan[J]. Chinese Tobacco Science, 2018, 39(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201803006.htm

    [18]

    胡瑞文, 刘勇军, 唐春闺, 等. 稻作烟区土壤硼钼养分垂直分布及与有机质的关系[J]. 中国烟草科学, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV202003002.htm

    Hu R W, Liu Y J, Tang C G, et al. Vertical distribution of boron and molybdenum in soil and their relationship with organic matter in paddy-tobacco growing areas[J]. Chinese Tobacco Science, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV202003002.htm

    [19]

    Yang P T, Wang S L. Sorption and speciation of moly-bdate in soils: Implications for molybdenum mobility and availability[J]. Journal of Hazardous Materials, 2021, 408: 124934.

    [20]

    温心怡, 李良木, 高云, 等. 曲靖市植烟土壤有效钼含量状况及与土壤因素的关系分析[J]. 土壤通报, 2019, 50(3): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201903026.htm

    Wen X Y, Li L M, Gao Y, et al. Distribution of soil available molybdenum and its relationship with soil factors in the tobacco planting areas of Qujing[J]. Chinese Journal of Soil Science, 2019, 50(3): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201903026.htm

    [21]

    朱宇通. 承德中部土壤Zn、Mo、B养分元素分布特征及影响因素研究[D]. 北京: 中国地质大学(北京), 2021.

    Zhu Y T. Study on the distribution characteristics and influencing factors of Zn, Mo and B nutrient elements in central Chengde soils[D]. Beijing: China University of Geosciences (Beijing), 2021.

    [22]

    刘鹏, 杨玉爱. 土壤中的钼及其植物效应的研究进展[J]. 农业环境保护, 2001, 24(4): 280-282. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104027.htm

    Liu P, Yang Y A. Research development of molybdenum in soil and its effects on vegetation[J]. Agro-Environmental Protection, 2001, 24(4): 280-282. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104027.htm

    [23]

    夏炎, 宋延斌, 侯进凯, 等. 河南洛阳市土壤和农作物中钼分布规律与影响因素研究[J]. 岩矿测试, 2021, 40(6): 820-832. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202104130052

    Xia Y, Song Y B, Hou J K, et al. Distribution law and influencing factors of molybdenum in soils and crops in Luoyang, Henan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 820-832. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202104130052

    [24]

    张继榛. 影响安徽省土壤中有效Mo含量的因素研究[J]. 土壤学报, 1994, 31(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB402.005.htm

    Zhang J Z. Study on factors affecting the content of available Mo in soils in Anhui Province[J]. Acta Pedologica Sinica, 1994, 31(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB402.005.htm

    [25]

    陈兴仁, 陈富荣, 贾十军, 等. 安徽省江淮流域土壤地球化学基准值与背景值研究[J]. 中国地质, 2012, 39(2): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202003.htm

    Chen X R, Chen F R, Jia S J, et al. Soil geochemical baseline and background in Yangtze River—Huaihe River Basin of Anhui Province[J]. China Geology, 2012, 39(2): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202003.htm

    [26]

    奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm

    Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of <Soil Geochemical Parameters> of China's publication[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm

    [27]

    徐宏林, 付豪, 叶岛, 等. 仙桃市西南部耕层土壤中养分元素有效量和有效度研究[J]. 资源环境与工程, 2017, 3(3): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201703009.htm

    Xu H L, Fu H, Ye D, et al. Research on available content and availability of topsoil nutrient elements in southwest Xiantao City[J]. Resources Environment & Engineering, 2017, 3(3): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201703009.htm

    [28]

    Wang Z Q, Hong C, Xing Y, et al. Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in northeast China[J]. Ecotoxicology and Environmental Safety, 2018, 154: 329-336.

    [29]

    张璐, 蔡泽江, 王慧颖, 等. 中国稻田土壤有效态中量和微量元素含量分布特征[J]. 农业工程学报, 2020, 36(16): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202016008.htm

    Zhang L, Cai Z J, Wang H Y, et al. Distribution characteristics of effective medium and micronutrient element contents in paddy soils of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202016008.htm

    [30]

    董国政, 刘德辉, 姜月华, 等. 湖州市土壤微量元素含量与有效性评价[J]. 土壤通报, 2004, 35(4): 474-478. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200404018.htm

    Dong G Z, Liu D H, Jiang Y H, et al. Contents of the soil available trace elements and their availability evaluation in Huzhou City of Zhejiang Province[J]. Chinese Journal of Soil Science, 2004, 35(4): 474-478. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200404018.htm

    [31]

    袁余洋, 刘属灵, 雒昆利, 等. 四川盆地典型农业区土壤中铜、钴、钼和锌的空间分异及其影响因素[J]. 高校地质学报, 2022, 28(4): 506-515. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202204005.htm

    Yuan Y Y, Liu S L, Luo K L, et al. Study on the spatial variation and driving factors of copper, cobalt, molybdenum and zinc in top soil of typical agricultural region in Sichuan Basin[J]. Geological Journal of China Universities, 2022, 28(4): 506-515. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202204005.htm

    [32]

    余慧敏, 朱青, 傅聪颖, 等. 江西鄱阳湖平原区农田土壤微量元素空间分异特征及其影响因素[J]. 植物营养与肥料学报, 2020, 26(1): 172-184. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202001017.htm

    Yu H M, Zhu Q, Fu C Y, et al. Spatial variability characteristics and impacting factors of soil trace elements in Poyang Lake Plain, Jiangxi of China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 172-184. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202001017.htm

    [33]

    邓小玉, 谢振翅. 湖北省土壤钼的含量分布及应用效果[J]. 土壤肥料, 1994(5): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL405.004.htm

    Deng X Y, Xie Z C. Content distribution and application effect of molybdenum in soil in Hubei Province[J]. Soil and Fertilizer Sciences, 1994(5): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL405.004.htm

    [34]

    Sun W G, Selim H M. Molybdenum-phosphate retention and transport in soils[J]. Geoderma, 2017, 308(15): 60-68.

    [35]

    程素贞, 张继榛. 不同磷(P)水平对土壤中钼(Mo)有效性的影响[J]. 安徽农业科学, 1989(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY198901007.htm

    Cheng S Z, Zhang J Z. Effect of different P-levels to availability of molybdenum in soil[J]. Journal of Anhui Agricultural Sciences, 1989(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY198901007.htm

    [36]

    汪新民. 土壤对钼的吸附与土壤供钼能力[J]. 安徽农学院学报, 1990, 19(4): 280-287. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU199004006.htm

    Wang X M. Study on soil adsorption of molybdenum and molybdenum supply ability of soil[J]. Journal of Anhui Agricultural College, 1990, 19(4): 280-287. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU199004006.htm

    [37]

    李朋飞, 杜国强, 刘超, 等. 安徽淮北平原农田土壤酸碱度特征及酸化趋势研究[J]. 华东地质, 2019, 40(3): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201903009.htm

    Li P F, Du G Q, Liu C, et al. Acidity and basicity characteristics and acidification trend of the farmland soil in Huaibei Plain, Anhui Province[J]. East China Geology, 2019, 40(3): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201903009.htm

  • 加载中

(3)

(3)

计量
  • 文章访问数:  1083
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2022-02-11
修回日期:  2022-02-23
录用日期:  2022-03-26
刊出日期:  2023-03-28

目录