中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义

尚文郁, 孙青, 谢曼曼, 战楠. 中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义[J]. 岩矿测试, 2023, 42(2): 346-360. doi: 10.15898/j.cnki.11-2131/td.202208210153
引用本文: 尚文郁, 孙青, 谢曼曼, 战楠. 中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义[J]. 岩矿测试, 2023, 42(2): 346-360. doi: 10.15898/j.cnki.11-2131/td.202208210153
SHANG Wenyu, SUN Qing, XIE Manman, ZHAN Nan. Characteristics of Lignin-derived Phenolic Compounds in Arid Lake, Northeastern China and Climatic Implications[J]. Rock and Mineral Analysis, 2023, 42(2): 346-360. doi: 10.15898/j.cnki.11-2131/td.202208210153
Citation: SHANG Wenyu, SUN Qing, XIE Manman, ZHAN Nan. Characteristics of Lignin-derived Phenolic Compounds in Arid Lake, Northeastern China and Climatic Implications[J]. Rock and Mineral Analysis, 2023, 42(2): 346-360. doi: 10.15898/j.cnki.11-2131/td.202208210153

中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义

  • 基金项目:
    国家自然科学基金青年基金项目“基于红外光谱的金川泥炭中有机碳、腐殖酸、木质素等古气候替代指标快速分析方法及在古气候研究中的应用”(41402325);国家自然科学基金面上项目“末次冰盛期以来中—缅热带玛珥湖古温度重建”(41877301);中央级科研院所基本业务经费项目“湖泊沉积物中记录区域健康风险评价的生态环境指标ACL的研究”(CSJ-2021-09)
详细信息
    作者简介: 尚文郁,博士研究生,助理研究员,从事环境地球化学及气候替代指标研究。E-mail: shangwenyu@cags.ac.cn
    通讯作者: 孙青,博士,研究员,从事全球变化研究工作。E-mail: sunqing1616@yahoo.com
  • 中图分类号: O657.63;P512.2

Characteristics of Lignin-derived Phenolic Compounds in Arid Lake, Northeastern China and Climatic Implications

More Information
  • 木质素广泛分布于维管植物,经分解生成的酚类化合物可示踪有机质来源、评估木质素降解程度,进而用于反演古环境与古气候变化。采用合适的分析方法有效地分解木质素是推断母源植物类型、降解程度的技术基础,常规方法是木质素经碱(或酸)解后,利用气相色谱-质谱法(GC-MS)分析酚类单体化合物,但分解、提取过程复杂、易引入杂质。热裂解技术可在高温下快速分解有机质,裂解产物可通过GC-MS进行在线分析,具有用样量少、有机质提取比例高、重现性好、操作便捷的特点。本文选择地处亚洲夏季风影响区域的边缘的内蒙伊和沙日乌苏湖,采用热裂解GC-MS(Py-GC/MS)技术,对湖泊沉积物进行裂解分析,在对裂解温度(450℃、550℃和650℃)进行了优化的基础上,识别了21种酚类化合物,包括:4-甲基苯酚、2-乙基苯酚等9种烷基酚类(PHs),4-乙基-2-甲氧基苯酚、4-乙烯基-2, 6-二甲氧基苯酚等9种烷基酚类(PHs)和12种甲氧基酚类(LGs)。结合沉积岩心样品AMS 14C年龄的分析结果,6.7ka以来沉积物中酚类化合物总量、PHs和LGs的变化趋势总体一致,呈现出6.7~4.0ka相对含量较高、4.0ka以来相对含量较低的特征。不同于PHs中邻(o-)-PHs、间(m-)-PHs、对(p-)-PHs的变化趋势与总量一致;但不同取代特征的LGs相对含量变化趋势存在差异,p-LGs在5.4ka前后就出现含量显著下降,3.8ka以来维持较低水平。根据微生物对木质素的“去甲基/去甲氧基”氧化反应途径,对位取代酚类化合物比值(p-PHs/p-LGs)可作为陆生高等植物降解指标,该值越大微生物降解作用越强。将p-PHs/p-LGs指标应用于伊和沙日乌苏沉积物样品结果显示,6.7ka以来p-PHs/p-LGs与正构烷烃单体碳同位素δ13C27~33变化趋势一致(R=-0.77),间接地指示了有效降水变化。即6.7ka以来气候整体转湿,区内陆生高等植物占据优势,充足的水分和有机质为微生物提供了适宜的生存环境和相对稳定的营养来源,降解作用整体呈增强趋势;6.3~5.5ka和4.1~3.6ka期间有效湿度降低,微生物对木质素的降解作用相对减弱。p-PHs/p-LGs指标对应了呼伦贝尔地区湿度变化特征,揭示了干旱-半干旱地区微生物降解与有效湿度变化的相关性,为探讨陆地生态系统对东亚季风北部边缘区气候变化的响应提供科学依据。

  • 加载中
  • 图 1  内蒙古伊和沙日乌苏湖与采样点位图

    Figure 1. 

    图 2  样品中不同类型酚类化合物选择离子色谱图及质谱裂解特征

    Figure 2. 

    图 3  不同裂解温度下产物相对含量分布及目标化合物色谱响应对比图

    Figure 3. 

    图 4  酚类化合物在总裂解产物中的相对含量及分布特征

    Figure 4. 

    图 5  p-PHs/p-LGs指标及同区气候指标变化特征

    Figure 5. 

    表 1  伊和沙日乌苏湖沉积物裂解产物中酚类化合物

    Table 1.  Pyrolytic phenolic compounds in sediment of Yiheshariwusu Lake

    代号 化合物名称 保留时间(min) 化学式 分子量 特征离子(m/z)
    PH1 苯酚
    Phenol
    20.14 C6H6O 94 94
    PH2 2-甲基苯酚
    2-Methylphenol
    23.02 C7H8O 108 107, 108
    PH3 苯乙酮
    Acetophenone
    23.22 C8H8O 120 105, 77
    PH4 4-甲基苯
    4-Methylphenol
    23.87 C7H8O 108 107, 108
    PH5 2-乙基苯酚
    2-Ethylphenol
    26.26 C8H10O 122 107, 122
    PH6 3-乙基苯酚
    3-Ethylphenol
    26.67 C8H10O 122 107, 122
    PH7 4-乙基苯酚
    4-Ethylphenol
    27.36 C8H10O 122 107, 122
    PH8 2-乙基-6-甲基苯酚
    2-Ethyl-6-methylphenol
    29.59 C9H12O 136 121, 136
    PH9 2-乙基-5-甲基苯酚
    2-Ethyl-5-methylphenol
    29.97 C9H12O 136 121, 136
    LG1 2-甲氧基苯酚
    2-Methoxyphenol (Guaiacol)
    23.22 C7H8O2 124 109, 124
    LG2 4-甲氧基苯酚
    Methoxyphenol
    24.24 C7H8O2 124 109, 124
    LG3 5-甲基-2-甲氧基苯酚
    Methoxy-5-methylphenol
    (5-Methylguaiacol)
    28.07 C8H10O2 138 123, 138
    LG4 4-乙基-2-甲氧基苯酚
    4-Ethyl-2-methoxyphenol
    (4-Ethylguaiacol)
    31.42 C9H12O2 152 137, 152
    LG5 4-乙烯基-2-甲氧基苯酚
    4-Vinyl-2-methoxyphenol
    (4-Vinylguaiacol)
    32.54 C9H10O2 150 135, 150
    LG6 2, 6-二甲氧基苯酚
    2, 6-dimethoxyphenol (Syringol)
    33.46 C8H10O3 154 154, 139
    LG7 4-(2-丙烯基)-2-甲氧基苯酚
    4-(2-Propenyl)-2-methoxyphenol (Eugenol)
    37.06 C10H12O2 164 164, 149
    LG8 4-乙酰基-2-甲氧基苯酚
    4-Acetyl-2-methoxyphenol (4-Acetylguaiacol)
    37.85 C9H10O3 166 151, 166
    LG9 4-乙基-2, 6-二甲氧基苯酚
    4-Ethyl-2, 6-dimethoxyphenol (4-Ethylsyringol)
    39.19 C10H14O3 182 167, 182
    LG10 4-乙烯基-2, 6-二甲氧基苯酚
    4-Vinyl-2, 6-dimethoxyphenol (4-Vinylsyringol)
    40.28 C10H12O3 180 165, 180
    LG11 4-羟基-3, 5-二甲氧基苯甲醛
    4-Hydroxy-3, 5-dimethoxybenzaldehyde (syringaldehyde)
    43.06 C9H10O4 182 182, 181
    LG12 4-(1-丙烯基)-2, 6-二甲氧基苯酚
    4-(1-Propenyl)-2, 6-dimethoxyphenol
    (4-Propenylsyringol)
    44.21 C11H14O3 194 194, 91
    下载: 导出CSV
  • [1]

    Vanholme R, Demedts B, Morreel K, et al. Lignin biosyn-thesis and structure[J]. Plant Physiology, 2010, 153(3): 895-905. doi: 10.1104/pp.110.155119

    [2]

    Mitra S, Bianchi T S, Guo L, et al. Terrestrially derived dissolved organic matter in the chesapeake bay and the Middle Atlantic Bight[J]. Geochimica et Cosmochimica Acta, 2000, 64(20): 3547-3557. doi: 10.1016/S0016-7037(00)00450-6

    [3]

    Jex C N, Pate G H, Blyth A J, et al. Lignin biogeochemistry: From modern processes to Quaternary archives[J]. Quaternary Science Reviews, 2014, 87: 46-59. doi: 10.1016/j.quascirev.2013.12.028

    [4]

    Ward N D, Krusche A V, Sawakuchi H O, et al. The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean[J]. Marine Chemistry, 2015, 177: 244-256. doi: 10.1016/j.marchem.2015.06.013

    [5]

    冯晓娟, 王依云, 刘婷, 等. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB202004010.htm

    Feng X J, Wang Y Y, Liu T, et al. Biomarkers and their applications in ecosystem research[J]. Chinese Journal of Plant Ecology, 2020, 44(4): 384-394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB202004010.htm

    [6]

    凌媛, 王永, 王淑贤, 等. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘, 2022, 29(2): 327-342. doi: 10.13745/j.esf.sf.2021.10.35

    Ling Y, Wang Y, Wang S X, et al. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity: A review[J]. Earth Science Frontiers, 2022, 29(2): 327-342. doi: 10.13745/j.esf.sf.2021.10.35

    [7]

    Goñi M A, Montgomery S. Alkaline CuO oxidation with a microwave digestion system: Lignin analyses of geochemical samples[J]. Analytical Chemistry, 2000, 72(14): 3116-3121. doi: 10.1021/ac991316w

    [8]

    Klein K, Gross-Schm lders M, Alewell C, et al. Chapter three-heating up a cold case: Applications of analytical pyrolysis GC/MS to assess molecular biomarkers in peat[M]//Advances in Agronomy. Academic Press, 2021: 115-159.

    [9]

    Tsutsuki K, Esaki I, Kuwatsuka S. CuO-oxidation products of peat as a key to the analysis of the paleo-environmental changes in a wetland[J]. Soil Science and Plant Nutrition, 1994, 40(1): 107-116. doi: 10.1080/00380768.1994.10414283

    [10]

    Meuzelaar H L C, Haider K, Nagar B R, et al. Comparative studies of pyrolysis-mass spectra of melanins, model phenolic polymers, and humic acids[J]. Geoderma, 1977, 17(3): 239-252. doi: 10.1016/0016-7061(77)90054-4

    [11]

    Bracewell J M, Robertson G W, Williams B L. Pyrolysis-mass spectrometry studies of humification in a peat and a peaty podzol[J]. Journal of Analytical & Applied Pyrolysis, 1980, 2(1): 53-62.

    [12]

    Page D W. Characterisation of organic matter in sediment from Corin Reservoir, Australia[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(2): 169-183. doi: 10.1016/S0165-2370(02)00130-4

    [13]

    Kumar M, Boski T, Lima-Filho F P, et al. Environmental changes recorded in the Holocene sedimentary infill of a tropical estuary[J]. Quaternary International, 2018, 476: 34-45. doi: 10.1016/j.quaint.2018.03.006

    [14]

    Saiz-Jimenez C, de Leeuw J W. Lignin pyrolysis products: Their structures and their significance as biomarkers[J]. Organic Geochemistry, 1986, 10(4-6): 869-876. doi: 10.1016/S0146-6380(86)80024-9

    [15]

    Tinoco P, Almendros G, Gonzalez-Vila F J. Impact of the vegetation on the lignin pyrolytic signature of soil humic acids from Mediterranean soils[J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(2): 407-420. doi: 10.1016/S0165-2370(02)00041-4

    [16]

    Carr A S, Boom A, Chase B M, et al. Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: An example from the southern cape coastline of South Africa[J]. Journal of Paleolimnology, 2010, 44(4): 947-961. doi: 10.1007/s10933-010-9466-9

    [17]

    Ohra-Aho T, Tenkanen M, Tamminen T. Direct analysis of lignin and lignin-like components from softwood kraft pulp by Py-GC/MS techniques[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1-2): 123-128. doi: 10.1016/j.jaap.2004.11.010

    [18]

    van der Kaaden A, Boon J J, Haverkamp J. The analytical pyrolysis of carbohydrates. 2-Differentiation of homopolyhexoses according to their linkage type, by pyrolysis-mass spectrometry and pyrolysis-gas chromatography/mass spectrometry[J]. Biomedical Mass Spectrometry, 1984, 11(9): 486-492. doi: 10.1002/bms.1200110910

    [19]

    Ninnes S, Tolu J, Meyer-Jacob C, et al. Investigating molecular changes in organic matter composition in two Holocene lake-Sediment records from central Sweden using pyrolysis-GC/MS[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(6): 1423-1438. doi: 10.1002/2016JG003715

    [20]

    Melenevskii V, Leonova G, Bobrov V, et al. Transformation of organic matter in the Holocene sediments of Lake Ochki (South Baikal region): Evidence from pyrolysis data[J]. Geochemistry International, 2015, 53(10): 903-921. doi: 10.1134/S0016702915080054

    [21]

    Carr A S, Boom A, Chase B M, et al. Holocene sea level and environmental change on the west coast of South Africa: Evidence from plant biomarkers, stable isotopes and pollen[J]. Journal of Paleolimnology, 2015, 53(4): 415-432. doi: 10.1007/s10933-015-9833-7

    [22]

    Tolu J, Gerber L, Boily J F, et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution: A promising analytical tool in (paleo)limnology[J]. Analytica Chimica Acta, 2015, 880: 93-102. doi: 10.1016/j.aca.2015.03.043

    [23]

    Xie M M, Sun Q, Dong H W, et al. n-Alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, northeastern China[J]. The Holocene, 2020, 30(10): 1451-1461. doi: 10.1177/0959683620932968

    [24]

    Schellekens J, Buurman P. n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation[J]. Geoderma, 2011, 164(3-4): 112-121. doi: 10.1016/j.geoderma.2011.05.012

    [25]

    Shang W Y, Wang S X, Ling Y, et al. Holocene pyrolytic nitrogen compounds by using pyrolysis-GC/MS and its paleoclimatic implication from Jinchuan peatbog, NE China[J]. Quaternary International, 2022, 616: 109-119. doi: 10.1016/j.quaint.2021.10.006

    [26]

    Kebelmann K, Hornung A, Karsten U, et al. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components[J]. Biomass and Bioenergy, 2013, 49: 38-48. doi: 10.1016/j.biombioe.2012.12.006

    [27]

    Lara-Gonzalo A, Kruge M A, Lores I, et al. Pyrolysis GC-MS for the rapid environmental forensic screening of contaminated brownfield soil[J]. Organic Geochemistry, 2015, 87: 9-20. doi: 10.1016/j.orggeochem.2015.06.012

    [28]

    Moldoveanu S C. Pyrolysis GC/MS, present and future (recent past and present needs)[J]. Journal of Microcolumn Separations, 2001, 13: 102-125. doi: 10.1002/mcs.1028

    [29]

    Schellekens J, Bradley J A, Kuyper T W, et al. The use of plant-specific pyrolysis products as biomarkers in peat deposits[J]. Quaternary Science Reviews, 2015, 123: 254-264. doi: 10.1016/j.quascirev.2015.06.028

    [30]

    Gupta N S. Molecular preservation of Eurypterids[M]//Biopolymers: A molecular paleontology approach. Dordrecht: Springer Netherlands, 2014: 119-134.

    [31]

    Lu X, Ma S, Chen Y, et al. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China[J]. Biomolecules, 2018, 8(4): 154-166. doi: 10.3390/biom8040154

    [32]

    Piñeiro-Juncal N, Kaal J, Moreira J C F, et al. Cover loss in a seagrass Posidonia oceanica meadow accelerates soil organic matter turnover and alters soil prokaryotic communities[J]. Organic Geochemistry, 2021, 151: 104-140.

    [33]

    Zhang Z, Wang J J, Lyu X, et al. Impacts of land use change on soil organic matter chemistry in the Everglades, Florida-A characterization with pyrolysis-gas chromatography-mass spectrometry[J]. Geoderma, 2019, 338: 393-400. doi: 10.1016/j.geoderma.2018.12.041

    [34]

    Zhu R, Versteegh G J M, Hinrichs K U. Detection of microbial biomass in subseafloor sediment by pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 175-180. doi: 10.1016/j.jaap.2016.02.002

    [35]

    Zúñiga D, Kaal J, Villacieros-Robineau N, et al. Tracing sinking organic matter sources in the NW Iberian upwelling system (NE Atlantic Ocean): Comparison between elemental, isotopic and molecular indicators[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 114-122. doi: 10.1016/j.jaap.2019.01.016

    [36]

    尚文郁, 孙静轶, 谢曼曼, 等. 基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探[J]. 岩矿测试, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202201120009

    Shang W Y, Sun J Y, Xie M M, et al. Py-GC/MS analysis method for aliphatic biomarker in desert lake sediment and its application in paleoclimatic study[J]. Rock and Mineral Analysis, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202201120009

    [37]

    丛浦珠, 苏克曼. 分析化学手册: 质谱分析(第九分册)[M]. 北京: 化学工业出版社, 2000.

    Cong P Z, Su K M. Handbook of analytical chemistry: Mass spectrometry (Chapter 9)[M]. Beijing: Chemical Industry Press, 2000.

    [38]

    Zhang J, Liu J, Liu R L. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate[J]. Bioresource Technology, 2015, 176: 288-291. doi: 10.1016/j.biortech.2014.11.011

    [39]

    Garcia-Perez M, Wang X S, Shen J, et al. Fast pyrolysis of Oil Mallee Woody biomass: Effect of temperature on the yield and quality of pyrolysis products[J]. Industrial & Engineering Chemistry Research, 2008, 47(6): 1846-1854.

    [40]

    Zhang H, Liao W, Zhou X, et al. Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar[J]. Bioresource Technology, 2022, 344: 126273. doi: 10.1016/j.biortech.2021.126273

    [41]

    Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21): 11770-11778.

    [42]

    Cui D, Li J, Zhang X, et al. Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 104980. doi: 10.1016/j.jaap.2020.104980

    [43]

    Kruge M A, Permanyer A. Application of pyrolysis-GC/MS for rapid assessment of organic contamination in sediments from Barcelona harbor[J]. Organic Geochemistry, 2004, 35(11): 1395-1408.

    [44]

    Kaal J, Cortizas A M, Rydberg J, et al. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssj n, Sweden[J]. Organic Geochemistry, 2015, 83-84: 253-262. doi: 10.1016/j.orggeochem.2015.04.005

    [45]

    Fabbri D, Sangiorgi F, Vassura I. Pyrolysis-GC-MS to trace terrigenous organic matter in marine sediments: A comparison between pyrolytic and lipid markers in the Adriatic Sea[J]. Analytica Chimica Acta, 2005, 530(2): 253-261. doi: 10.1016/j.aca.2004.09.020

    [46]

    Sigleo A C, Hoering T C, Helz G R. Composition of estuarine colloidal material: Organic components[J]. Geochimica et Cosmochimica Acta, 1982, 46(9): 1619-1626. doi: 10.1016/0016-7037(82)90318-0

    [47]

    Kaal J. Analytical pyrolysis in marine environments revisited[J]. Analytical Pyrolysis Letters, 2019.

    [48]

    Kaal J, Lavery P S, Martínez Cortizas A, et al. Recon-struction of 7500 years of coastal environmental change impacting seagrass ecosystem dynamics in Oyster Harbour (SW Australia)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 558: 109953. doi: 10.1016/j.palaeo.2020.109953

    [49]

    Kaal J, Martinez Cortizas A, Mateo M A, et al. Deciphe-ring organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting[J]. Science of the Total Environment, 2020, 742: 140554. doi: 10.1016/j.scitotenv.2020.140554

    [50]

    Boateng A A, Hicks K B, Vogel K P. Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity[J]. Journal of Analytical & Applied Pyrolysis, 2006, 75(2): 55-64.

    [51]

    Faure P, Jeanneau L, Lannuzel F. Analysis of organic matter by flash pyrolysis-gas chromatography-mass spectrometry in the presence of Na-smectite: When clay minerals lead to identical molecular signature[J]. Organic Geochemistry, 2006, 37(12): 1900-1912. doi: 10.1016/j.orggeochem.2006.09.008

    [52]

    Zhang J, Wu C, Hou W, et al. Biological calcium carbonate with a unique organic-inorganic composite structure to enhance biochar stability[J]. Environmental Science: Processes & Impacts, 2021, 23(11): 1747-1758.

    [53]

    Chmiel H E, Niggemann J, Kokic J, et al. Uncoupled organic matter burial and quality in boreal lake sediments over the Holocene[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(9): 1751-1763. doi: 10.1002/2015JG002987

    [54]

    Moingt M, Lucotte M, Paquet S, et al. Deciphering the impact of land-uses on terrestrial organic matter and mercury inputs to large boreal lakes of central Québec using lignin biomarkers[J]. Applied Geochemistry, 2014, 41: 34-48. doi: 10.1016/j.apgeochem.2013.11.008

    [55]

    Opsahl S, Benner R. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeo-chemical implications[J]. Geochimica et Cosmochimica Acta, 1995, 59(23): 4889-4904. doi: 10.1016/0016-7037(95)00348-7

    [56]

    Dittmar T, Lara R J. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1417-1428. doi: 10.1016/S0016-7037(00)00619-0

    [57]

    Sanjurjo-Sánchez J, Kaal J, Fenollós J L M. Organic matter from bevelled rim bowls of the middle Euphrates: Results from molecular characterization using pyrolysis-GC-MS[J]. Microchemical Journal, 2018, 141: 1-6. doi: 10.1016/j.microc.2018.05.001

    [58]

    Kaal J, Cortizas A M, Biester H. Downstream changes in molecular composition of DOM along a headwater stream in the Harz Mountains (central Germany) as determined by FTIR, pyrolysis-GC-MS and THM-GC-MS[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 50-61. doi: 10.1016/j.jaap.2017.06.025

    [59]

    杨丽阳, 吴莹, 黄俊华, 等. 大九湖泥炭柱样的木质素特征[J]. 地球化学, 2009, 38(2): 133-139. doi: 10.3321/j.issn:0379-1726.2009.02.004

    Yang L Y, Wu Y, Huang J H, et al. Lignin characteristics in a peat core of Lake Dajiu[J]. Geochimica, 2009, 38(2): 133-139. doi: 10.3321/j.issn:0379-1726.2009.02.004

    [60]

    刘月, 王敏, 张婷, 等. 杭州湾外泥质区柱状沉积物中木质素的分布特征及其环境指示意义[J]. 海洋环境科学, 2017, 36(1): 8-14. doi: 10.13634/j.cnki.mes.2017.01.002

    Liu Y, Wang M, Zhang T, et al. Distribution characteristics of lignin in sediment cores from the mud area off Hangzhou Bay and the implication for regional sedimentary environment[J]. Chinese Journal of Marine Environmental Science, 2017, 36(1): 8-14. doi: 10.13634/j.cnki.mes.2017.01.002

    [61]

    Tuomela M, Hatakka A. Oxidative fungal enzymes for bioremediation[M]//Comprehensive biotechnology (The second edition). Burlington: Academic Press, 2011.

    [62]

    Otsuka Y, Sonoki T, Ikeda S, et al. Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol β-aryl ether linkages[J]. European Journal of Biochemistry, 2003, 270(11): 2353-2362. doi: 10.1046/j.1432-1033.2003.03545.x

    [63]

    Wong D W S. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 174-209. doi: 10.1007/s12010-008-8279-z

    [64]

    Boerjan W, Ralph J, Baucher M. Lignin Biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1): 519-546. doi: 10.1146/annurev.arplant.54.031902.134938

    [65]

    Philben M, Ziegler S E, Edwards K A, et al. Soil organic nitrogen cycling increases with temperature and precipitation along a boreal forest latitudinal transect[J]. Biogeochemistry, 2016, 127(2): 397-410.

    [66]

    Hawkes C V, Kivlin S N, Rocca J D, et al. Fungal community responses to precipitation[J]. Global Change Biology, 2015, 17(4): 1637-1645.

    [67]

    Xiao J, Chang Z, Wen R, et al. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China[J]. Holocene, 2009, 19(6): 899-908. doi: 10.1177/0959683609336574

    [68]

    Wen R, Xiao J, Chang Z, et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China[J]. Boreas, 2010, 39(2): 262-272. doi: 10.1111/j.1502-3885.2009.00125.x

    [69]

    曾琳, 鹿化煜, 弋双文, 等. 末次盛冰期和全新世大暖期呼伦贝尔沙地的环境变化[J]. 第四纪研究, 2013, 33(2): 243-251. doi: 10.3969/j.issn.1001-7410.2013.02.05

    Lin Z, Lu H Y, Yi S W, et al. Environmental changes of Hulun Buir dunefield in northeastern China during the last Glacial maximum and Holocene optimum[J]. Quaternary Sciences, 2013, 33(2): 243-251. doi: 10.3969/j.issn.1001-7410.2013.02.05

    [70]

    Li S H, Sun J. Optical dating of Holocene dune sands from the Hulun Buir Desert, northeastern China[J]. Holocene, 2006, 16(3): 457-462. doi: 10.1191/0959683606hl942rr

    [71]

    温锐林, 肖举乐, 常志刚, 等. 全新世呼伦湖区植被和气候变化的孢粉记录[J]. 第四纪研究, 2010, 30(6): 1105-1115. doi: 10.3969/j.issn.1001-7410.2010.06.05

    Wen R L, Xiao J L, Chang Z G, et al. Holocene vegetation and climate changes reflected by the pollen record of Hulun Lake, north eastern Inner Mongolia[J]. Quaternary Sciences, 2010, 30(6): 1105-1115. doi: 10.3969/j.issn.1001-7410.2010.06.05

    [72]

    Na L, Yu L, Guang B, et al. Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean[J]. Journal of Asian Earth Sciences, 2016, 115: 298-307. doi: 10.1016/j.jseaes.2015.10.009

    [73]

    张风菊, 薛滨, 姚书春. 中全新世以来呼伦湖沉积物碳埋藏及其影响因素分析[J]. 湖泊科学, 2018, 30(1): 234-244. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801024.htm

    Zhang F J, Xue B, Yao S C. Organic carbon burial and its driving mechanism in the sediment of Lake Hulun, northeastern Inner Mongolia, since the mid-Holocene[J]. Journal of Lake Sciences, 2018, 30(1): 234-244. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801024.htm

    [74]

    董浩伟, 赵佳玉, 曾凡刚, 等. 柱色谱分离-分子筛络合洗脱过程中正构烷烃单体碳同位素分馏研究[J]. 岩矿测试, 2021, 40(3): 349-357. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005030063

    Dong H W, Zhao J Y, Zeng F G, et al. Study on specific carbon isotope fractionation of n-alkanes during column chromatography separation-molecular sieve complexation adsorption[J]. Rock and Mineral Analysis, 2021, 40(3): 349-357. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202005030063

    [75]

    王宁, 朱庆增, 谢曼曼, 等. 尿素络合法分离-气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素[J]. 岩矿测试, 2015, 34(4): 471-479. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.016

    Wang N, Zhu Q Z, Xie M M, et al. An improved urea adduction method for analyzing carbon isotope of ppm-level n-alkanes in soil and plant samples[J]. Rock and Mineral Analysis, 2015, 34(4): 471-479. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.016

    [76]

    Routson C C, McKay N P, Kaufman D S, et al. Mid-latitude net precipitation decreased with Arctic warming during the Holocene[J]. Nature, 2019, 568(7750): 83-87. doi: 10.1038/s41586-019-1060-3

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1335
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2022-08-21
修回日期:  2022-09-29
录用日期:  2022-11-01
刊出日期:  2023-03-28

目录