Application of Automated Mineral Identification and Characterization System to Identify Minerals and Occurrences of Elements in Jixiangyu Rare Earth Deposit of Eastern Liaoning
-
摘要:
辽宁省已知的稀土矿类型较少,以往稀土矿床的勘查评价偏重于独居石砂矿和碱性岩型稀土矿,沉积变质型稀土矿涉及较少,其矿石学、矿物学研究程度偏低。本文以吉祥峪稀土矿床为研究对象,应用自动矿物识别和表征系统(AMICS),结合高分辨率扫描电子显微镜(SEM)和高通量能谱仪(EDS)对矿石进行分析,获得吉祥峪稀土矿石中矿物化学成分、元素赋存状态及矿物共生组合关系。结果表明,矿石中稀土元素以La、Ce、Pr、Nd等轻稀土元素为主;主要稀土矿物为独居石(0.73%)、褐帘石(6.25%)、方铈石(0.25%)和磷灰石(类质同象)等;通过背散射图像结合光学显微镜观察得出矿石中的褐帘石、独居石、方铈石及磷灰石等具有较好的连生关系,这些矿物以单颗粒或聚粒结构与磁铁矿交叉镶嵌,或分布在磁铁矿边缘及间隙中。矿石中稀土矿物与磁铁矿密切共生,含量呈正相关,其原因可能为:①沉积富集。吉祥峪稀土矿位于辽吉裂谷的核部,裂谷为矿床提供了有利的沉积环境。②岩浆改造。岩浆热液可能与里尔峪一段变粒岩产生反应,使其中的稀土和铁元素集聚。③构造控制。吉祥峪稀土矿位于吉祥峪—算盘峪背斜核部穹隆之上,构造发育,断裂带和褶皱可能在地壳的应力作用下形成矿物质富集的通道,使矿质从深部运移至浅部。
Abstract:BACKGROUND In Liaoning Province, there are limited known types of rare earth deposits, and historically, exploration and evaluation efforts have mainly focused on monazite placer and alkaline rock type rare earth deposits. Less attention has been given to sedimentary metamorphic rare earth primary deposits. Previous studies have shown that the Jixiangyu rare earth deposit is categorized as a sedimentary metamorphic remodeling deposit related to ancient volcanic structures. The analysis of existing data and previous exploration results prove that this type of rare earth deposit has a considerable rare earth content with monazite and allanite. However, unresolved issues remain, such as the occurrence status of rare earth minerals and the feasibility of extracting and utilizing rare earth minerals.
OBJECTIVES To explore the metallogenic mechanism and unveil the formation process of rare earth deposits by identifying the types of rare earth minerals, investigating the occurrence and distribution of rare earth elements within minerals, and analyzing the composition, structure, and distribution characteristics of rare earth minerals and associated minerals.
METHODS The experimental testing was conducted at the Henan Provincial Rock and Mineral Testing Center. The experimental instruments used in this study included an ultra-high resolution field emission scanning electron microscope (Zeiss Sigma500), an electric cooling energy spectrometer (Bruker XFlash6610), and a set of AMICS automatic mineral identification and characterization systems. During the experiments, a high vacuum environment was maintained, with an accelerating voltage of 20kV and a beam current of 5nA. The working distance was set at 11.8mm, and the point analysis acquisition time reached 250kcps before stopping automatically.
RESULTS The primary rare earth minerals in the Jixiangyu rare earth deposit were identified as allanite, monazite, and cerianite, constituting 6.25%, 0.73%, and 0.25% of the total mineral content, respectively. Light rare earth elements such as La, Ce, Pr, and Nd were predominantly present, enriched in monazite, xenotime, and bastnaesite, with a minor occurrence of rare earth elements in the form of solid solutions within apatite. Gangue minerals include actinolite, quartz, plagioclase, potassium feldspar, sphene, and biotite. The rare earth minerals, including allanite, monazite, cerianite, and apatite exhibited interlocking structures with magnetite, occurring as single particles or clustered structures, and were distributed along the edges and gaps of magnetite, forming complex symbiotic relationships.
CONCLUSIONS The rare earth formation process can be attributed to the following factors: (1) Sedimentary enrichment: The Jixiangyu rare earth deposit is situated in the core area of the Liao Ji Rift, providing favorable sedimentary conditions for ore deposition. Over time, sediments accumulated, compacted, and underwent alteration, gradually releasing and enriching rare earth and iron elements, leading to formation of the ore deposit. (2) Magmatic modification: Magmatic hydrothermal fluids may have interacted with variolitic rocks from the Lieryu section, facilitating the simultaneous or interweaving mineralization of rare earth minerals and magnetite in the same geological environment, resulting in the activation and in situ enrichment of high background values of rare earth and iron elements. (3) Tectonic control: The Jixiangyu rare earth deposit is situated on the anticlinal structure of the Liaoning—Jilin Paleoproterozoic rift core where fault zones and folds may have acted as channels for mineral enrichment, facilitating the migration of minerals from deeper to shallower crustal regions.
-
表 1 吉祥峪稀土矿床样品AMICS矿物定量分析结果
Table 1. Quantitative analysis results of minerals measured by AMICS in Jixiangyu rare earth deposit.
矿物名称 质量分数
(%)面积百分比
(%)统计面积
(μm2)颗粒数
(个)统计相对误差
(%)矿物标准分子式[29-30] 褐帘石 6.25 6.62 3386157.37 809 0.14 (Ce,Ca)(Ce,La)(Nd,Pr)(Fe2+,Fe3+)(Al,Mg)[Si2O7][SiO4]O(OH) 独居石 0.73 0.57 289757.48 105 0.35 (Ce,La,Ca,Fe,Th,Nd,Pr)[SiO4] [PO4] 方铈石 0.25 0.50 257590.30 78 0.06 (Ce3+,Th,Fe,Pr,Nd)O2 磷灰石 5.73 7.22 3696466.51 861 0.10 FeFe2O4 磁铁矿 63.48 48.95 25056614.78 1891 0.07 Ca5[PO4]3(F,OH) 阳起石 7.61 9.94 5088796.43 524 0.11 Ca2Na(Mg,Fe)5(Al,Fe3+)[(Si,Al)4O11]2(OH)2 石英 7.36 11.16 5713847.71 1218 0.08 SiO2 钙铁榴石 0.01 0.01 70.14 1 2.00 Ca3Fe2[SiO4]3 斜长石 2.14 3.25 1663198.10 288 0.16 Na[AlSi3O8] 榍石 0.39 0.44 227134.51 301 0.20 CaTi[SiO4]O 锆石 0.01 0.01 1928.91 12 0.58 Zr(SiO4) 绿泥石 0.14 0.19 99300.33 166 0.18 Fe3 2+[Si4O10](OH)2(Mg,Al,Fe,Si)3(OH)6 钾长石 2.20 3.41 1743721.36 134 0.21 K[AlSi3O8] 黑云母 0.51 0.65 334115.41 344 0.15 K(Fe,Al)3AlSi3O10(F,OH)2 未知矿物 3.20 6.36 3255145.74 4728 0.05 / 孔隙 / 0.73 371809.84 22084 0.06 / 表 2 褐帘石能谱分析结果
Table 2. Energy spectrum analysis results of allanite.
样品编号 质量分数(%) O Fe Si Ca Al Mg Ce La Nd Pr XT02-07 37.43 16.07 11.74 7.76 5.27 0.59 11.06 6.95 2.04 1.08 XT02-13 35.73 15.11 12.31 7.76 5.50 0.59 11.60 7.81 2.33 1.25 XT02-29 38.23 15.73 11.30 8.39 5.02 0.41 10.94 7.07 1.94 0.98 XT02-30 37.13 17.78 11.63 8.06 5.17 0.47 10.27 6.18 2.31 1.00 XT02-31 36.85 16.50 12.80 7.41 6.17 0.82 9.77 6.17 2.26 1.25 XT02-32 37.03 17.08 11.49 8.39 4.99 0.42 10.48 6.58 2.54 1.00 平均值 37.07 16.38 11.88 7.96 5.35 0.55 10.69 6.79 2.24 1.09 表 3 方铈石能谱分析结果
Table 3. Energy spectrum analysis results of cerianite.
样品编号 质量分数(%) Ce O Fe Si P Pr Nd Ca Th Al La Mn Mg XT02-38 57.32 17.24 8.32 3.63 3.96 3.84 2.80 1.36 / 1.53 / / / XT02-39 52.73 16.46 8.53 4.17 3.58 4.15 2.35 1.29 / 1.75 / 3.95 1.04 XT02-54 45.70 23.43 13.12 4.25 2.71 0.98 1.13 1.79 1.95 2.04 2.02 / 0.89 XT02-61 53.13 25.81 5.44 4.38 3.06 1.30 1.36 1.04 2.02 1.11 1.35 / / XT02-62 66.35 15.50 4.47 2.79 3.22 1.65 1.59 1.02 1.61 / 1.80 / / XT02-63 55.86 21.51 6.37 2.63 4.07 2.56 1.83 1.57 2.84 0.74 / / / XT02-64 44.60 27.54 13.65 3.86 2.93 1.94 1.48 1.02 0.62 1.46 0.89 / / 平均值 53.67 21.07 8.56 3.67 3.36 2.35 1.79 1.30 1.29 1.23 0.87 0.56 0.28 表 4 独居石能谱分析结果
Table 4. Energy spectrum analysis results of monazite.
样品编号 质量分数(%) O Ce La P Nd Pr Ca Fe Si Th XT02-06 27.53 24.44 17.99 14.39 7.11 2.49 2.20 2.20 0.93 0.72 XT-02-40 21.03 12.05 28.06 14.69 12.33 4.81 3.46 2.34 0.88 0.33 XT02-46 25.81 11.32 26.81 12.77 11.69 4.49 2.40 1.35 1.71 1.65 XT02-47 26.91 9.71 26.13 13.38 11.81 4.71 2.16 1.64 1.38 2.17 XT02-53 32.08 9.84 24.95 12.25 10.93 4.13 1.90 0.89 1.07 1.96 XT02-55 31.13 20.20 19.32 13.69 7.65 2.45 4.33 1.24 / / XT02-56 38.95 14.45 19.58 12.79 8.18 2.67 2.06 / 1.32 / XT02-68 39.31 14.25 18.25 11.32 6.91 2.53 3.14 2.85 0.54 0.90 XT02-69 30.77 26.29 16.70 15.64 7.28 2.30 / / / 1.02 XT02-71 27.88 27.67 17.08 13.91 7.96 2.16 / 0.27 0.65 2.43 XT02-73 28.40 28.23 18.51 14.91 6.78 1.99 / 0.30 / 0.88 XT02-74 26.63 27.20 17.16 14.08 7.92 2.07 / 0.39 1.01 3.55 XT02-75 28.00 27.00 17.16 14.73 7.52 2.08 / 0.82 0.77 1.91 XT02-76 26.93 28.47 18.32 15.59 7.42 2.06 / 0.38 1.01 / 平均值 29.38 20.08 20.43 13.87 8.68 2.92 1.55 1.05 0.81 1.25 -
[1] 张臻悦,何正艳,徐志高,等. 中国稀土矿稀土配分特征[J]. 稀土, 2016, 37(1): 121−127.
Zhang Z Y,He Z Y,Xu Z G,et al. Distribution characteristics of rare earth elements in rare earth ores in China[J]. Chinese Rare Earths, 2016, 37(1): 121−127.
[2] 袁忠信,白鸽. 中国内生稀有稀土矿床的时空分布[J]. 矿床地质, 2001, 20(4): 347−354. doi: 10.3969/j.issn.0258-7106.2001.04.008
Yuan Z X,Bai G. Temporal and spatial distribution of endogenous rare and rare earth mineral deposits in China[J]. Mineral Deposits, 2001, 20(4): 347−354. doi: 10.3969/j.issn.0258-7106.2001.04.008
[3] 李童斐,夏庆霖,汪新庆,等. 中国稀土矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 95−106.
Li T F,Xia Q L,Wang X Q,et al. Geological characteristics and resource potential analysis of rare earth mineral resources in China[J]. Earth Science Frontiers, 2018, 25(3): 95−106.
[4] 孙鹏慧. 辽宁省矿产资源潜力评价成果报告: 第一册至第六册及其工作报告[R]. 辽宁省地质矿产调查院, 辽宁省地质勘查院, 东北煤田地质局勘查设计研究总院. 2013, 62-66.
Sun P H. Evaluation report on mineral resource potential in Liaoning Province, Volumes 1-6, and its work report[R]. Liaoning Geological Survey Institute, Liaoning Institute of Geological Exploration, Northeast Coalfield Geological Bureau Survey Design and Research Institute. 2013, 62-66.
[5] 籍魁. 辽宁省辽阳县郭家含稀土铁矿床矿床地质特征及成因探讨[J]. 吉林地质, 2012, 31(2): 50−54. doi: 10.3969/j.issn.1001-2427.2012.02.014
Ji K. Geological characteristics and genesis of the Guojia rare earth iron deposit in Liaoyang County,Liaoning Province[J]. Jilin Geology, 2012, 31(2): 50−54. doi: 10.3969/j.issn.1001-2427.2012.02.014
[6] 杨占峰,朱智慧,王振江,等. 白云鄂博主矿霓石型稀土铁矿石中稀土元素在独立矿物中的富集状况研究[J]. 中国稀土学报, 2019, 37(6): 769−776.
Yang Z F,Zhu Z H,Wang Z J,et al. Enrichment of rare earth elements in aegirine type rare earth iron ore in Bayan Obo mine[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(6): 769−776.
[7] 罗明标,杨枝,郭国林,等. 白云鄂博铁矿石中稀土的赋存状态研究[J]. 中国稀土学报, 2007(S1): 57−61.
Luo M B,Yang Z,Guo G L,et al. Research on occurrence state of REE in Bayan Obo iron ore[J]. Journal of the Chinese Society of Rare Earths, 2007(S1): 57−61.
[8] Redwan M,Rammlmair D,Meima J A. Application of mineral liberation analysis in studying micro-sedimenttological structures within sulfide mine tailings and their effect on hardpan formation[J]. Science of the Total Environment, 2012, 414: 480−493. doi: 10.1016/j.scitotenv.2011.10.038
[9] 陈倩,宋文磊,杨金昆,等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368.
Chen Q,Song W L,Yang J K,et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy——An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368.
[10] 刘东盛,陈圆圆. 矿物自动分析系统在碳酸岩型稀土地球化学勘查中的应用[J]. 物探与化探, 2022, 46(3): 637−644.
Liu D S,Chen Y Y. Application of automated mineral analysis systems in geochemical exploration of carbonatite-related REE deposits[J]. Geophysical and Geochemical Exploration, 2022, 46(3): 637−644.
[11] 邓刘敏,葛祥坤,范光,等. 基于扫描电镜-能谱仪的矿物定量分析——以AMICS为例[J]. 世界核地质科学, 2023, 40(1): 98−105.
Deng L M,Ge X K,Fan G,et al. Quantitative analysis of minerals based on scanning electron microscope-energy dispersive spectrometer:A case study of AMICS[J]. World Nuclear Geoscience, 2023, 40(1): 98−105.
[12] Wilhelm N,Dieter R. Automated mineralogy based on micro-energy-dispersivs in comparison to a mineral liberation analyzer[J]. Geoscientific Instrumentation Methods and Data Systems, 2017, 6(2): 429−437. doi: 10.5194/gi-6-429-2017
[13] 葛祥坤, 范光, 汪波, 等. 自动矿物分析仪用于砂岩型铀矿床矿物组成的定量分析[C]//中国核科学技术进展报告(第五卷)——中国核学会2017年学术年会论文集(第2册). 北京: 中国核学会, 2017: 125-130.
Ge X K, Fan G, Wang B, et al. Quantitative analysis of mineral composition in sandstone-type uranium deposits using an automated mineral analyzer[C]//Advances in Chinese nuclear science and technology (Volume 5)—Proceedings of the 2017 Academic Annual Conference of the Chinese Nuclear Society (Volume 2). Beijing: Chinese Nuclear Society, 2017: 125-130.
[14] 张然,叶丽娟,党飞鹏,等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61−73.
Zhang R,Ye L J,Dang F P,et al. Application of automatic mineral analysis technology to identify minerals and occurrences of elements in sandstone-type uranium deposits in the Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61−73.
[15] 温利刚,曾普胜,詹秀春,等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121−129.
Wen L G,Zeng P S,Zhan X C,et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121−129.
[16] 温利刚,贾木欣,王清,等. 基于扫描电子显微镜的自动矿物学新技术——BPMA及其应用前景[J]. 有色金属(选矿部分), 2021(2): 12−23. doi: 10.3969/j.issn.1671-9492.2021.02.003
Wen L G,Jia M X,Wang Q,et al. A new SEM-based automated mineralogy system:BPMA and its application prospects in mining industry[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 12−23. doi: 10.3969/j.issn.1671-9492.2021.02.003
[17] 温利刚,曾普胜,詹秀春,等. 迤纳厂矿床:一个“白云鄂博式”铁-铜-稀土矿床[J]. 地学前缘, 2018, 25(6): 308−329.
Wen L G,Zeng P S,Zhan X C,et al. The Yinachang deposit in Central Yunnan Province,Southwest China:A “Bayan Obo-type” Fe-Cu-REE deposit[J]. Earth Science Frontiers, 2018, 25(6): 308−329.
[18] 温利刚,曾普胜,詹秀春,等. 云南禄丰鹅头厂铁铜矿床中稀土矿物的发现及意义[J]. 岩石矿物学杂志, 2019, 38(4): 477−497.
Wen L G,Zeng P S,Zhan X C,et al. The discovery of rare earth minerals in the Etouchang Fe-Cu deposit in Lufeng,Central Yunnan Province,and its geological significance[J]. Acta Petrologica et Mineralogica, 2019, 38(4): 477−497.
[19] 罗晓锋,杨占峰,王振江,等. 白云鄂博东矿萤石型铌-稀土-铁矿石中铌的赋存状态及分布规律[J]. 矿物学报, 2022, 42(5): 659−668.
Luo X F,Yang Z F,Wang Z J,et al. Occurrence and distribution patterns of niobium in fluorite-type niobium-rare earth-iron ores from Baiyun Ebo east mine[J]. Acta Mineralogica Sinica, 2022, 42(5): 659−668.
[20] 王恩雷,李晓安,姜效军,等. 辽宁海城某菱镁矿难选原因分析及浮选研究[J]. 矿产综合利用, 2021(2): 13−16.
Wang E L,Li X A,Jiang X J,et al. Study on the analysis of refractory separation cause and flotation of Haicheng magnesite in Liaoning Province[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 13−16.
[21] 胡欢,王汝成,车旭东,等. 关键金属元素铍的原位分析技术研究进展[J]. 岩石学报, 2022, 38(7): 1890−1900. doi: 10.18654/1000-0569/2022.07.05
Hu H,Wang R C,Che X D,et al. Research progress of in situ analysis technology of key metal element beryllium[J]. Acta Petrologica Sinica, 2022, 38(7): 1890−1900. doi: 10.18654/1000-0569/2022.07.05
[22] 范雨辰,刘可禹,蒲秀刚,等. 页岩储集空间微观形态分类及三维结构重构——以渤海湾盆地沧东凹陷古近系孔店组二段为例[J]. 石油勘探与开发, 2022, 49(5): 943−954. doi: 10.11698/PED.20220280
Fan Y C,Liu K Y,Pu X G,et al. Morphological classification and three-dimensional pore structure reconstruction of shale oil reservoirs:A case from the second member of Kongdian Formation in the Cangdong Sag,Bohai Bay Basin,East China[J]. Petroleum Exploration and Development, 2022, 49(5): 943−954. doi: 10.11698/PED.20220280
[23] 王汉霞,孟庆成,张长捷. 隆昌地区辽河群岩石组构分析[J]. 辽宁地质, 1991(4): 305−313.
Wang H X,Meng Q C,Zhang C J. Petrographic analysis of the Liaohe Formation in Longchang area[J]. Liaoning Geology, 1991(4): 305−313.
[24] 郭进京. 辽东隆昌地区辽河群划分及其构造样式演变[J]. 辽宁地质, 1992(3): 255−263.
Guo J J. Subdivision and tectonic style evolution of the Liaohe Formation in the Longchang area,Liaodong[J]. Liaoning Geology, 1992(3): 255−263.
[25] 刘福来,刘平华,王舫,等. 胶—辽—吉古元古代造山/活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 2015, 31(10): 2816−2846.
Liu F L,Liu P H,Wang F,et al. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao—Liao—Ji orogenic/mobile belt,North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10): 2816−2846.
[26] 杨中柱. 辽宁省区域地质志[M]. 大连: 辽宁省地质勘查院, 2013, 28-44.
Yang Z Z. Regional Geological Monograph of Liaoning Province[M]. Dalian: Liaoning Geological Exploration Institute, 2013, 28-44.
[27] 肖仪武,叶小璐,武若晨,等. 选矿产品矿物自动分析的光片制备[J]. 中国无机分析化学, 2020, 10(2): 1−6. doi: 10.3969/j.issn.2095-1035.2020.02.001
Xiao Y W,Ye X L,Wu R C,et al. Polished section sample preparation of mineral processing products for mineral automatic analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 1−6. doi: 10.3969/j.issn.2095-1035.2020.02.001
[28] Figueroa G, Moeller K, Buhot M, et al. Advanced discrimination of hematite and magnetite by automated mineralogy[C]//Broekmans M. Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). Heidelberg: Springer Press, 2014.
[29] 徐登科. 矿物化学式计算方法[M]. 北京: 地质出版社, 1977, 27-40.
Xu D K. Methods for Calculating Mineral Chemical Formulas[M]. Beijing: Geological Publishing House, 1977, 27-40.
[30] 池汝安, 王淀佐. 稀土选矿与提取技术[M]. 北京: 科学出版社, 1996, 63-95.
Chi R A, Wang D Z. Rare Earth Ore Beneficiation and Extraction Techniques[M]. Beijing: Science Press, 1996, 63-95.
[31] Allanite H J. Thorium and light rare earth element carrier in subducted crust[J]. Chemical Geology, 2002, 192: 289−306. doi: 10.1016/S0009-2541(02)00222-X
[32] 王汝成,王硕,邱检生,等. 东海超高压榴辉岩中绿帘石、褐帘石、磷灰石和钍石集合体的电子探针成分和化学定年研究[J]. 岩石学报, 2006, 22(7): 1855−1866. doi: 10.3321/j.issn:1000-0569.2006.07.011
Wang R C,Wang S,Qiu J S,et al. Electron-microprobe compositions and chemical dating of composite grains of epidote,allanite,apatite and Th-silicate from the Sulu UHP eclogites (CCSD main hole,Donghai,Eastern China)[J]. Acta Petrologica Sinica, 2006, 22(7): 1855−1866. doi: 10.3321/j.issn:1000-0569.2006.07.011
[33] Shaw D M. Geochemistry of pelitic rocks[J]. Gsa Bulletin, 1956, 67(7): 919−934. doi: 10.1130/0016-7606(1956)67[919:GOPRPI]2.0.CO;2
[34] 陈菲,苏文,张铭,等. 褐帘石的谱学特征[J]. 岩石学报, 2019, 35(1): 233−242. doi: 10.18654/1000-0569/2019.01.18
Chen F,Su W,Zhang M,et al. Spectroscopic characteristics of the allanite[J]. Acta Petrologica Sinica, 2019, 35(1): 233−242. doi: 10.18654/1000-0569/2019.01.18
[35] Yakovenchuk V N,Krivovichev S V,Ivanyuk G Y,et al. Kihlmanite-(Ce),Ce2TiO2[SiO4](HCO3)2(H2O),a new rare-earth mineral from the pegmatites of the Khibiny alkaline massif,Kola Peninsula,Russia[J]. Mineralogical Magazine, 2014, 78(3): 483−496. doi: 10.1180/minmag.2014.078.3.01
[36] 周剑雄,陈振宇,芮宗瑶,等. 独居石的电子探针钍-铀-铅化学测年[J]. 岩矿测试, 2002, 21(4): 241−246. doi: 10.3969/j.issn.0254-5357.2002.04.001
Zhou J X,Chen Z Y,Rui Z Y. Th-U-Pb chemical dating of monazite by electron probe[J]. Rock and Mineral Analysis, 2002, 21(4): 241−246. doi: 10.3969/j.issn.0254-5357.2002.04.001
[37] 梁晓,徐亚军,訾建威,等. 独居石成因矿物学特征及其对U-Th-Pb年龄解释的制约[J]. 地球科学, 2022, 47(4): 1383−1398.
Liang X,Xu Y J,Zi J W,et al. Genetic mineralogy of monazite and constraints on interpretation of U-Th-Pb ages[J]. Earth Science, 2022, 47(4): 1383−1398.
[38] 王智琳,许德如,Kusiak M A,等. 海南石碌铁矿独居石的成因类型、化学定年及地质意义[J]. 岩石学报, 2015, 31(1): 200−216.
Wang Z L,Xu D R,Kusiak M A,et al. Genesis of and CHIME dating on monazite in the Shilu iron ore deposit,Hainan Province of South China,and its geological implications[J]. Acta Petrologica Sinica, 2015, 31(1): 200−216.
[39] Puchelt H,Emmermann R. Bearing of rare earth patterns of apatites from igneous and metamorphic rocks[J]. Earth & Planetary Science Letters, 1976, 31(2): 279−286.
[40] 韦春婉,许成,付伟,等. 稀土元素在岩浆和水热系统的实验岩石学和地球化学研究进展[J]. 岩石学报, 2022, 38(2): 455−471. doi: 10.18654/1000-0569/2022.02.10
Wei C W,Xu C,Fu W,et al. Research progress in experimental petrology and geochemistry of rare earth elements in magma and hydrothermal systems[J]. Acta Petrologica Sinica, 2022, 38(2): 455−471. doi: 10.18654/1000-0569/2022.02.10
[41] 朱笑青,王中刚,黄艳,等. 磷灰石的稀土组成及其示踪意义[J]. 稀土, 2004, 25(5): 41−45,63. doi: 10.3969/j.issn.1004-0277.2004.05.013
Zhu X Q,Wang Z G,Huang Y,et al. Research advances in experimental petrology and geochemistry of rare earth elements in magmatic and hydrothermal systems[J]. Acta Petrologica Sinica, 2004, 25(5): 41−45,63. doi: 10.3969/j.issn.1004-0277.2004.05.013
[42] 饶金山,刘超,胡红喜,等. 磷灰石含稀土机制与分离特性研究[J]. 稀土, 2021, 42(2): 84−93. doi: 10.16533/j.cnki.15-1099/tf.20210009
Rao J S,Liu C,Hu H X,et al. Study on the mechanism and separation characteristics of rare earths in apatite[J]. Rare Earths, 2021, 42(2): 84−93. doi: 10.16533/j.cnki.15-1099/tf.20210009
[43] Barker R D, Barker S L L, Wilson S A,et al. Quantitative mineral mapping of drill core surfaces I: A method for µXRF mineral calculation and mapping of hydrothermally altered, fine-grained sedimentary rocks from a Carlin-type gold deposit[J]. Economic Geology, 2021, 116(4): 803−819. doi: 10.5382/econgeo.4803
[44] Udayakumar S, Noor A F M, Rezan S A, et al. Chemical and mineralogical characterization of Malaysian monazite concentrate[J]. Mining, Metallurgy & Exploration, 2020, 37: 415−431.
[45] Zhong J, Hu C, Fan H, et al. A new type U-Th-REE-Nb mineralization related to albitite: A case study from the Chachaxiangka deposit in the Northeastern Qaidam Basin of China[J]. China Geology, 2019, 2(4): 422−438.
[46] Redwan M, Rammlmair D, Nikonow W. Application of quantitative mineralogy on the neutralization-acid potential calculations within µm-scale stratified mine tailings[J]. Environmental Earth Sciences, 2017, 76(1): 46. doi: 10.1007/s12665-016-6344-4