-
摘要:
煤层作为岩石圈重要的碳库,被岩浆破坏和吞噬,直接加速了地质历史上岩石圈的碳循环。为揭示该过程中接触变质煤微形貌的变化过程和原因,本研究采集了皖北袁店二矿岩体外围不同热变质程度的接触变质煤样品,进行了煤质分析、可溶有机组分分离、气相色谱-质谱(GC-MS)、偏光显微镜(PLM)、扫描电镜(SEM)等实验。结果显示,趋近岩体,样品挥发份、氢、氮、可溶有机质含量减少;灰分产率和镜质组反射率增加;可溶芳烃当中萘系列相对含量降低,菲系列相对含量升高。未受影响煤和浅热变质煤显微组分主要由胶质结构体组成,后者裂隙发育。天然焦主要由镶嵌结构体组成,局部发育形状不规则的脱挥发孔,孔径多介于20µm×50µm至50µm×150µm。火夹焦主要由多孔炭和炭微球组成:多孔炭富含圆形-椭圆形气孔,孔径多介于0.5~3µm,炭微球群发育在裂隙以及气孔内壁上。分析表明,趋近岩体,煤层热变质程度持续增加:浅热变质煤是煤层受较弱热变质而脆性断裂的产物;天然焦是浅热变质煤脱挥发份、塑性形变所致;火夹焦是天然焦被岩浆进一步中间相化的结果。因此,本文认为,接触变质煤消失过程中微形貌的变化是煤岩组分热蚀变、脱挥发份、中间相化的过程。
Abstract:BACKGROUND During tectonic movements and geological activities, coal seams are destroyed and engulfed by magma, which not only accelerates the slow carbon cycling process in geological history, but also changes and disrupts the carbon cycling balance of the lithosphere at that time. As a global period of tectonic magmatism in the Mesozoic, the Yanshan period magma intruded into the Mesozoic coal-bearing basins and intruded and engulfed coal seams on a large scale.
OBJECTIVES To reveal the process and reasons for the change of contact metamorphic coal micromorphology during the process.
METHODS Contact metamorphic coal samples with different degrees of thermal metamorphism at the periphery of the Yuandian Ⅱ mine in northern Anhui Province were collected and subjected to coal quality analysis, organic fraction separation, GC-MS, polarized light microscopy (PLM) and scanning electron microscopy (SEM).
RESULTS Toward the rock, the contents of volatile, hydrogen, nitrogen and soluble organic matter of the sample decreases; ash yield and mirror group reflectance increases; relative content of naphthalene series decreases; relative content of phenanthrene series among soluble aromatics increases. The microfractions of unaffected coal and shallow thermal metamorphic coal consist mainly of colloidal structural bodies, and the latter is fracture developed. The natural coke is composed mainly of mosaic structure with irregularly shaped devolatilized pores, and the pore sizes range from 20µm×50µm to 50µm×150µm. The magma coke is composed mainly of porous carbon and carbon microspheres: the porous carbon is rich in round-elliptical pores, the pore sizes range from 0.5 to 3µm, and the carbon microspheres are developed on the fissures and the inner wall of the pores.
CONCLUSIONS Tending to the rock, the degree of thermal metamorphism of coal seams continues to increase: Shallow thermally metamorphosed coals are the products of brittle fracture of coal seams subjected to weaker thermal metamorphism; Natural coke is the result of volatile fraction removal and plastic deformation of shallow thermally metamorphosed coals; Magma coke is the result of further intermediate phase transformation of natural coke by magma. Therefore, the change of contact metamorphic coal micromorphology is considered to be caused by the process of thermal alteration, devolatilization and intermediate phase transformation of coal rock components.
-
表 1 袁店二矿8-3采区7-2煤层7238工作面样品基本特征
Table 1. Coal quality parameters of metamorphic coal from 7238 working face samples of 7-2 coal seam in 8-3 mining area of Yuandian No.2 coal mine.
样品
编号样品类型 工业分析指标(%) 元素分析指标(%) Rr Mad Ad Vdaf Cd Hd Nd YE01 火夹焦 1.47 21.33 8.06 60.39 1.28 0.96 3.19 YE02 天然焦 1.85 11.93 7.29 71.52 1.76 1.44 2.31 YE03 浅热变质煤 1.01 11.44 20.47 72.38 3.30 1.53 1.43 YE04 未受影响煤 1.18 6.30 34.90 75.31 4.62 1.72 0.96 YE05 未受影响煤 1.31 7.84 34.08 73.47 4.48 1.63 0.95 YE06 未受影响煤 1.07 7.71 32.41 72.45 4.40 1.60 0.90 注:Mad—水分(空气干燥基); Ad—灰分(干燥基); Vdaf—挥发份(干燥无灰基); Cd—碳(干燥基); Hd—氢(干燥基); Nd—氮(干燥基);Rr—镜质组平均随机反射率。
表 2 袁店二矿8-3采区7-2煤层7238工作面样品可溶有机质含量
Table 2. Content of organic extracts of metamorphic coal from working face 7238 of coal seam 7-2 in mining area 8-3 of Yuandian No.2 coal mine.
样品编号 有机质含量
(mg/g)有机组分含量(mg/g) 饱和烃 芳香烃 极性物 YE01 0.10 0.05 0.02 0.03 YE02 0.18 0.09 0.03 0.06 YE03 6.77 1.07 2.29 3.41 YE04 7.91 1.31 2.70 3.90 -
[1] 唐跃刚,王绍清,郭鑫,等. 煤有机地球化学研究进展与展望[J]. 矿物岩石地球化学通报, 2021, 40(3): 574−596,777.
Tang Y G,Wang S Q,Guo X,et al. Researches on the organic geochemistry of coal:Progresses and prospects[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(3): 574−596,777.
[2] 赵宁,周蕾,庄杰,等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报, 2021, 41(19): 7648−7658.
Zhao N,Zhou L,Zhuang J,et al. Integration analysis of the carbon sources and sinks in terrestrial ecosystems,China[J]. Acta Ecologica Sinica, 2021, 41(19): 7648−7658.
[3] Zheng S,An Y F,Lai C K,et al. Genesis of high-Mg adakites in the southeastern margin of North China Craton:Geochemical and U-Pb geochronological perspectives[J]. Frontiers in Earth Science, 2021, 9: 731233. doi: 10.3389/feart.2021.731233
[4] 胡靓,张德贤,娄威,等. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究[J]. 岩矿测试, 2022, 41(4): 564−574.
Hu L,Zhang D X,Lou W,et al. In situ LA-ICP-MS determination of trace elements in magnetite from a gypsumsalt bearing iron deposit and geochemical characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564−574.
[5] 张学君,张垚垚,刘凯,等. 锆石U-Pb和Lu-Hf同位素研究内蒙乌努格吐山斑岩型铜钼矿岩浆岩特征[J]. 岩矿测试, 2022, 41(5): 774−788.
Zhang X J,Zhang Y Y,Liu K,et al. Zircon U-Pb and Lu-Hf isotopic dating of magmatic rocks in the Wunugetushan porphyry copper-molybdenum deposit,Inner Mongolia[J]. Rock and Mineral Analysis, 2022, 41(5): 774−788.
[6] 姜禾禾. 从碳源到碳汇:大陆弧演化过程中岩浆与剥蚀作用对长期碳循环的影响[J]. 岩石学报, 2022, 38(5): 1302−1312. doi: 10.18654/1000-0569/2022.05.02
Jiang H H. From carbon source to carbon sink:Influences of magmatism and erosion in continental arcs on long-term carbon cycle[J]. Acta Petrologica Sinica, 2022, 38(5): 1302−1312. doi: 10.18654/1000-0569/2022.05.02
[7] 安燕飞,汪米娜,刘玲玲,等. 淮北袁店8煤岩浆热蚀变的微组构响应[J]. 煤炭学报, 2017, 42(11): 2975−2980.
An Y F,Wang M N,Liu L L,et al. Microfabrics response of coal to magma among coal seam Ⅷ in Yuandian mine of Huaibei City,China[J]. Journal of China Coal Society, 2017, 42(11): 2975−2980.
[8] Moura H,Suarez R I,Marques M M,et al. Influence of magmatic fluids on the organic and inorganic fractions of coals from the Peñarroya—Belmez—Espiel Basin (Spain)[J]. International Journal of Coal Geology, 2021, 235: 103679. doi: 10.1016/j.coal.2021.103679
[9] 王海军. 柳江盆地岩浆活动对主力煤田水文地质特征的影响[J]. 煤炭学报, 2021, 46(5): 1670−1684.
Wang H J. Influence of magmatic activities in Liujiang Basin on hydrogeological characteristics of main coalfields[J]. Journal of China Coal Society, 2021, 46(5): 1670−1684.
[10] Zhang B F,Chen J,Sha J D,et al. Geochemistry of coal thermally-altered by igneous intrusion:A case study from the Pansan coal mine of Huainan coalfield,Anhui,Eastern China[J]. Journal of Geochemical Exploration, 2020, 213: 106532. doi: 10.1016/j.gexplo.2020.106532
[11] 宋晓夏,马宏涛,李凯杰,等. 大同煤田石炭—二叠系接触变质煤的煤岩学特征研究[J]. 煤炭科学技术, 2020, 48(12): 182−191.
Song X X,Ma H T,Li K J,et al. Study on coal petrology characteristics of contact metamorphosed coal from Carboniferous—Permian in Datong coalfield[J]. Coal Science and Technology, 2020, 48(12): 182−191.
[12] 汪米娜,安燕飞,何凯,等. 皖北石台矿岩浆蚀变煤中有毒元素分布、赋存及富集机理[J]. 矿物岩石地球化学通报, 2019, 38(6): 1118−1128.
Wang M N,An Y F,He K,et al. Distribution,occurrence and enrichment mechanism of toxic elements in magmatic altered coal in Shitai mine,Northern Anhui[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2019, 38(6): 1118−1128.
[13] An Y F,Liu L L,Wang M N,et al. Source and enrichment of toxic elements in coal seams around mafic intrusions:Constraints from pyrites in the Yuandian coal mine in Anhui,Eastern China[J]. Minerals, 2018, 8(4): 164. doi: 10.3390/min8040164
[14] Qu Q Y,Liu G J,Henry M,et al. Tin stable isotopes in magmatic-affected coal deposits:Insights in the geochemical behavior of tin[J]. Applied Geochemistry, 2020, 119: 104641. doi: 10.1016/j.apgeochem.2020.104641
[15] Chen M Y,Cheng Y P,Zhou H X,et al. Effects of igneous intrusions on coal pore structure,methane desorption and diffusion within coal,and gas occurrence[J]. Environmental & Engineering Geoscience, 2017, 23(3): 191−207.
[16] 王亮,郭海军,程远平,等. 岩浆岩环境煤层瓦斯异常赋存特征与动力灾害防控关键技术[J]. 煤炭学报, 2022, 47(3): 1244−1259.
Wang L,Guo H J,Cheng Y P,et al. The abnormal coal seam gas occurrence characteristics and the dynamic disaster control technologies in the magmatic rock intrusion area[J]. Journal of China Coal Society, 2022, 47(3): 1244−1259.
[17] 姜亚琳,郑刘根,程桦,等. 淮北卧龙湖煤矿岩-煤蚀变带矿物变化特征[J]. 矿物岩石地球化学通报, 2017, 36(3): 510−515.
Jiang Y L,Zheng L G,Cheng H,et al. Mineralogical characteristics of the alteration zone between coal and intrusion in the Wolonghu coal mine,Huaibei area,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2017, 36(3): 510−515.
[18] Rodrigues S,Esterle J,Ward V,et al. Flow structures and mineralisation in thermally altered coal from the Moatize Basin,Mozambique[J]. International Journal of Coal Geology, 2020, 228: 103551. doi: 10.1016/j.coal.2020.103551
[19] Song X X, Li K J, Ma H T, et al. Characteristics of an altered diabase dike in a coal seam: A case study from the Datong coalfield, Shanxi, China[J]. Geofluids, 2020: 3593827.
[20] Song X X,Ma H T,Saalidong B M,et al. Petrography,mineralogy,and geochemistry of thermally altered coal in the Tashan coal mine,Datong coalfield,China[J]. Minerals, 2021, 11(9): 1−28.
[21] Chen H,Wang S Q,Zhang X M,et al. A study of chemical structural evolution of thermally altered coal and its effect on graphitization[J]. Fuel, 2021, 283: 119295. doi: 10.1016/j.fuel.2020.119295
[22] Chen H,Wang S Q,Deng J S,et al. Petrologic characteristics and chemical structures of macerals in a suite of thermally altered coals by confocal Raman[J]. ACS Omega, 2021, 6(49): 33409−33418. doi: 10.1021/acsomega.1c03922
[23] Matlala I V,Moroeng O M,Wanger N J. Macromolecular structural changes in contact metamorphosed inertinite-rich coals from the No. 2 seam,Witbank coalfield (South Africa):Insights from petrography,NMR and XRD[J]. International Journal of Coal Geology, 2021, 247: 103857. doi: 10.1016/j.coal.2021.103857
[24] Wang X L,Wang S Q,Hao C,et al. Quantifying orientation and curvature in HRTEM lattice fringe micrographs of naturally thermally altered coals:New insights from a structural evolution perspective[J]. Fuel, 2022, 309: 122180. doi: 10.1016/j.fuel.2021.122180
[25] 代世峰,唐跃刚,姜尧发,等. 煤的显微组分定义与分类(ICCP system 1994)解析 Ⅰ:镜质体[J]. 煤炭学报, 2021, 46(6): 1821−1832.
Dai S F,Tang Y G,Jiang Y F,et al. An in-depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers,Ⅰ:Vitrinite[J]. Journal of China Coal Society, 2021, 46(6): 1821−1832.
[26] Zhao M X,An Y F,Wang M N,et al. New genesis of natural coke around magmatic intrusion at the Shitai coalmine of Huaibei City,North China[J]. Acta Geologica Sinica, 2019, 93(4): 1158−1159. doi: 10.1111/1755-6724.13827
[27] Pan J N,Lü M M,Bai H L,et al. Effects of metamorphism and deformation on the coal macromolecular structure by laser Raman spectroscopy[J]. Energy & Fuels, 2017, 31(2): 1136−1146.
[28] Wang R W,Liu G J. Variations of concentration and composition of polycyclic aromatic hydrocarbons in coals in response to dike intrusion in the Huainan coalfield in Eastern China[J]. Organic Geochemistry, 2015, 83-84: 202−214. doi: 10.1016/j.orggeochem.2015.03.014
[29] 王小华,赵洪宇,宋强,等. 不同性质褐煤催化裂解热解产物提质及机理分析[J]. 工程热物理学报, 2019, 40(5): 1194−1203.
Wang X H,Zhao H Y,Song Q,et al. Catalytic upgrading of lignite pyrolysis tar over the different properties of lignite-based catalyst and the analysis of its mechanism[J]. Journal of Engineering Thermophysics, 2019, 40(5): 1194−1203.
[30] 岳莉,陈召,赖仕全,等. 煤系针状焦原料在成焦过程中的红外光谱定量分析[J]. 光谱学与光谱分析, 2020, 40(8): 2468−2473.
Yue L,Chen Z,Lai S Q,et al. Infrared spectroscopic quantitative analysis of raw material used as coal-based needle coke in the coking process[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2468−2473.
[31] Jiang J Y,Zhang Q,Cheng Y P,et al. Quantitative investigation on the structural characteristics of thermally metamorphosed coal:Evidence from multi-spectral analysis technology[J]. Environmental Earth Sciences, 2017, 76(11): 406. doi: 10.1007/s12665-017-6740-4
[32] Presswood S M,Rimmer S M,Anderson K B,et al. Geochemical and petrographic alteration of rapidly heated coals from the Herrin (No. 6) coal seam,Illinois Basin[J]. International Journal of Coal Geology, 2016, 165: 243−256. doi: 10.1016/j.coal.2016.08.022
[33] 陈健,李洋,刘文中,等. 岩浆侵入对煤结构的影响评述[J]. 煤炭科学技术, 2021, 49(6): 170−178.
Chen J,Li Y,Liu W Z,et al. Review on impacts of igneous intrusion in coal measures on coal texture[J]. Coal Science and Technology, 2021, 49(6): 170−178.
[34] 陈儒庆. 煤化作用期间煤的地质流变学[J]. 煤田地质与勘探, 1991, 19(2): 36−39.
Chen R Q. Geological rheology of coal during coalification[J]. Coal Geology & Exploration, 1991, 19(2): 36−39.
[35] 方家虎,唐修义. 热变煤的光学结构及其地质意义[J]. 煤田地质与勘探, 1993, 21(5): 21−25.
Fang J H,Tang X Y. The optical textures of the thermally altered coals and their geological implications[J]. Coal Geology & Exploration, 1993, 21(5): 21−25.
[36] Rimmer S M,Crelling J C,Yoksoulian L E. An occurrence of coked bitumen,raton formation,Purgatoire River Valley,Colorado,USA[J]. International Journal of Coal Geology, 2015, 141-142: 63−73. doi: 10.1016/j.coal.2015.02.010
[37] Ward C R,Warbrooke P R,Roberts F I. Geochemical and mineralogical changes in a coal seam due to contact metamorphism,Sydney Basin,New South Wales,Australia[J]. International Journal of Coal Geology, 1989, 11(2): 105−125. doi: 10.1016/0166-5162(89)90001-3
[38] Sanyal S. Nature of a thin vein of solidified tarry matter formed during natural carbonization of coal from Victoria west colliery Raniganj coalfield,India[J]. Fuel, 1965, 44(5): 333−338.