中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

原油不同含氮组分氮同位素的测定方法与分布特征

栗敏, 秦婧, 白杨, 何晨, 徐学敏, 陈践发. 原油不同含氮组分氮同位素的测定方法与分布特征[J]. 岩矿测试, 2023, 42(4): 771-780. doi: 10.15898/j.ykcs.202206300120
引用本文: 栗敏, 秦婧, 白杨, 何晨, 徐学敏, 陈践发. 原油不同含氮组分氮同位素的测定方法与分布特征[J]. 岩矿测试, 2023, 42(4): 771-780. doi: 10.15898/j.ykcs.202206300120
LI Min, QIN Jing, BAI Yang, HE Chen, XU Xuemin, CHEN Jianfa. Determination Methods and Distribution Characteristics of Nitrogen Isotopes in Different Nitrogenous Components of Crude Oil[J]. Rock and Mineral Analysis, 2023, 42(4): 771-780. doi: 10.15898/j.ykcs.202206300120
Citation: LI Min, QIN Jing, BAI Yang, HE Chen, XU Xuemin, CHEN Jianfa. Determination Methods and Distribution Characteristics of Nitrogen Isotopes in Different Nitrogenous Components of Crude Oil[J]. Rock and Mineral Analysis, 2023, 42(4): 771-780. doi: 10.15898/j.ykcs.202206300120

原油不同含氮组分氮同位素的测定方法与分布特征

  • 基金项目: 国家自然科学基金青年科学基金项目“泥页岩中不同赋存状态氮同位素分布特征及其地质意义”(41902159)
详细信息
    作者简介: 栗敏,博士,高级工程师,主要从事油气地质相关工作。E-mail:april_limin@126.com
    通讯作者: 陈践发,博士,教授,研究方向为油气成藏、油气地球化学。E-mail:jfchen@cup.edu.cn
  • 中图分类号: TQ126.2;P736.4

Determination Methods and Distribution Characteristics of Nitrogen Isotopes in Different Nitrogenous Components of Crude Oil

More Information
  • 氮同位素的分布特征在古气候环境、古沉积及演化特征的研究方面具有重要的意义。氮是原油的重要元素之一,主要赋存于非烃和沥青质组分中,按极性可划分为碱性和非碱性含氮组分。由于原油的碳/氮比高,大部分原油无法通过直接测试获得稳定的氮同位素数据,从而制约了原油氮同位素数据的分析与应用。为了解决原油氮同位素实验测试技术瓶颈,更好地推动原油氮同位素的科学研究与生产应用,本文利用两阶段分离的前处理方法,首先将原油中的非烃和沥青质组分进行分离,并在非烃组分中分离出碱性氮和非碱性氮组分。采用杜马斯燃烧法对原油中的各含氮组分进行同位素测定;同时选用不同值域范围的多个稳定氮同位素标准样品(USGS61、USGS62、USGS63)对实验数据结果进行质量监控,原油各组分氮同位素数据不确定度均小于±0.4‰。通过分离、测定海相和陆相两种不同沉积环境的原油样品,结果表明:陆相沉积环境的原油样品氮同位素重于海相沉积环境;沥青质组分氮同位素分布范围(δ15N沥-海=3.0‰~5.5‰;δ15N沥-陆=7.4‰~9.4‰)重于非烃组分(δ15N非-海=2.1‰~3.3‰;δ15N非-陆=3.8‰~5.4‰);不同极性含氮化合物的氮同位素的分布特征表现为非碱性氮组分(δ15N非碱-海=2.5‰~3.2‰;δ15N非碱-陆=5.9‰)重于碱性氮组分(δ15N碱-海=0.8‰~1.0‰;δ15N碱-陆=3.5‰)。

  • 加载中
  • 图 1  不同沉积环境原油氮同位素的分布特征(陈践发等,2015[28]

    Figure 1. 

    图 2  不同极性含氮化合物组分氮同位素的分布特征

    Figure 2. 

    表 1  标准样品氮同位素测定值的平行结果及偏差统计

    Table 1.  Parallel results and deviation statistics of nitrogen isotope values of standard samples.

    检测批次标样编号δ15N/14N测定值(‰)δ15N/14N平均值(‰)标准偏差(SD,‰)误差范围(‰)
    第一组USGS61−2.64,−2.58,−2.94,−2.88,−2.61,−2.79−2.730.2±0.3
    第二组USGS61−2.82,−2.75,−2.81,−2.99,−2.93,−2.77−2.850.1±0.2
    第一组USGS6219.53,19.97,19.75,20.03,20.08,19.7919.860.3±0.1
    第二组USGS6220.15,19.60,19.68,20.24,19.57,20.0419.880.4±0.2
    第一组USGS6337.99,37.76,37.69,38.05,38.12,38.0037.940.2±0.3
    第二组USGS6337.62,37.66,37.60,37.54,37.49,37.8837.630.1±0.2
    下载: 导出CSV

    表 2  原油样品的组分含量分布

    Table 2.  Content distribution of components in crude oil samples.

    样品环境样品编号饱和烃(%)芳烃(%)非烃(%)沥青质(%)
    海相原油Oil-182.7112.344.130.82
    Oil-273.5822.662.751.01
    Oil-363.1627.815.043.99
    陆相Oil-472.1615.709.332.81
    Oil-569.7714.1713.612.45
    Oil-671.0413.9911.893.08
    下载: 导出CSV

    表 3  原油样品氮同位素测定值的平行结果及偏差统计

    Table 3.  Parallel results and deviation statistics of nitrogen isotope values of crude oil samples.

    样品
    编号
    沥青质δ15N非烃δ15N
    测试值
    (‰)
    校正值
    (‰)
    平均值
    (‰)
    标准偏差
    (‰)
    误差范围
    (‰)
    测试值
    (‰)
    校正值
    (‰)
    平均值
    (‰)
    标准偏差
    (‰)
    误差范围
    (‰)
    Oil-1 3.2 3.2 3.0 0.2 ±0.4 1.7 1.8 2.1 0.3 ±0.4
    2.9 3.0 2.2 2.3
    2.8 2.8 1.9 2.1
    Oil-2 5.2 5.1 5.5 0.4 ±0.4 2.8 2.8 3.0 0.2 ±0.2
    5.7 5.6 3.2 3.1
    5.8 5.8 3.1 3.0
    Oil-3 4.7 4.8 5.0 0.2 ±0.3 3.3 3.4 3.3 0.2 ±0.3
    4.9 4.9 3.5 3.5
    5.4 5.2 3.1 3.2
    Oil-4 8.3 8.3 8.5 0.2 ±0.2 5.5 5.6 5.4 0.2 ±0.4
    8.6 8.5 5.1 5.3
    8.8 8.7 5.2 5.2
    Oil-5 7.3 7.3 7.4 0.1 ±0.2 3.5 3.6 3.8 0.2 ±0.4
    7.6 7.4 4.0 4.0
    7.7 7.5 3.6 3.7
    Oil-6 9.1 9.3 9.4 0.1 ±0.2 4.5 4.5 4.7 0.2 ±0.4
    9.6 9.4 4.8 4.9
    9.4 9.5 4.8 4.8
    下载: 导出CSV
  • [1]

    徐雁前,张同伟. 沉积物中有机氮的研究[J]. 天然气地球科学, 1996, 7(4): 34−41. doi: 10.11764/j.issn.1672-1926.1996.04.34

    Xu Y Q,Zhang T W. Study on organic nitrogen in sediments[J]. Natural Gas Geoscience, 1996, 7(4): 34−41. doi: 10.11764/j.issn.1672-1926.1996.04.34

    [2]

    任飞. 石油中的氮化合物[J]. 广东化工, 2006, 33(8): 38−40. doi: 10.3969/j.issn.1007-1865.2006.08.013

    Ren F. Nitrogen compounds in petroleum[J]. Guangdong Chemical Industry, 2006, 33(8): 38−40. doi: 10.3969/j.issn.1007-1865.2006.08.013

    [3]

    Patience R L,Baxby M,Bartle K D,et al. The functionality of organic nitrogen in some recent sediments from the Peru upwelling region[J]. Organic Geochemistry, 1992, 18(2): 161−169. doi: 10.1016/0146-6380(92)90126-I

    [4]

    Li M, Larter S, Stoddart D, et al. Fractionation of pyrrolic nitrogen compounds in petroleum during migration: Derivation of migration-related geochemical parameters[M]. London: Geological Society, 1995: 103-123.

    [5]

    韩晓昱,马波,凌凤香,等. 原油中含氮化合物的分离富集及鉴定方法[J]. 石油与天然气化工, 2006, 35(2): 145−148. doi: 10.3969/j.issn.1007-3426.2006.02.021

    Han X Y,Ma B,Ling F X,et al. Advances in separation and quantification of nitrogen-containing compounds in crude oil[J]. Chemical Engineering of Oil Gas, 2006, 35(2): 145−148. doi: 10.3969/j.issn.1007-3426.2006.02.021

    [6]

    Schiller J E,Mathiason D R. Separation method for coal-derived solids and heavy liquids[J]. Analytical Chemistry, 1977, 49(8): 1225−1228. doi: 10.1021/ac50016a041

    [7]

    Later D W,Lee M L,Bartle K D,et al. Chemical class separation and characterization of organic compounds in synthetic fuels[J]. Analytical Chemistry, 1981, 53(11): 1612−1620. doi: 10.1021/ac00234a017

    [8]

    李素梅,张爱云,王铁冠,等. 含氮化合物的实验方法初步评价[J]. 地球化学, 1999, 28(4): 397−404. doi: 10.3321/j.issn:0379-1726.1999.04.011

    Li S M,Zhang A Y,Wang T G,et al. Evalution of isolation schemes of nitrogenous compounds[J]. Geochimica, 1999, 28(4): 397−404. doi: 10.3321/j.issn:0379-1726.1999.04.011

    [9]

    李素梅,张爱云,王铁冠,等. 原油中吡咯类化合物的分离方法研究[J]. 石油实验地质, 1999, 21(3): 278−282. doi: 10.3969/j.issn.1001-6112.1999.03.018

    Li S M,Zhang A Y,Wang T G,et al. Separation methods of pyrrolic compounds in crude oil[J]. Experimental Petroleum Geology, 1999, 21(3): 278−282. doi: 10.3969/j.issn.1001-6112.1999.03.018

    [10]

    谢颖,鲍晓军,谭华平,等. 有机酸脱除基础油中碱性氮化物的研究[J]. 润滑油, 2000, 15(4): 52−54. doi: 10.19532/j.cnki.cn21-1265/tq.2000.04.013

    Xie Y,Bao X J,Tan H P,et al. Study on the removal of basic nitrogen compounds from lube base oil by organic acid[J]. Lubricating Oil, 2000, 15(4): 52−54. doi: 10.19532/j.cnki.cn21-1265/tq.2000.04.013

    [11]

    郭文玲,李萍,张起凯,等. 微波辐射络合萃取精制催化裂化柴油[J]. 石油与天然气化工, 2006, 35(6): 447−449,416−417. doi: 10.3969/j.issn.1007-3426.2006.06.009

    Guo W L,Li P,Zhang Q K,et al. Complexation extraction using microwave radiation[J]. Chemical Engineering of Oil & Gas, 2006, 35(6): 447−449,416−417. doi: 10.3969/j.issn.1007-3426.2006.06.009

    [12]

    McKay J F,Amend P J,Harnsberge P L. Composition of petroleum heavy ends 2. Chromatography of compound types in petroleum >675℃ residues[J]. Fuel, 1981, 60(1): 17−26. doi: 10.1016/0016-2361(81)90026-0

    [13]

    张胜,杨秋水,李似欣. 络合法分离页岩油中的含氮化合物[J]. 石油大学学报(自然科学版), 1996, 20(S1): 77−80.

    Zhang S,Yang Q S,Li S X. Separation of nitrogen compounds from shale oil by complexation method[J]. Journal of the University of Petroleum (Edition of Natural Science), 1996, 20(S1): 77−80.

    [14]

    黄克明,江绿深,朱永飞. 络合反应法脱除润滑油中的碱性氮化物[J]. 润滑油, 1999, 14(5): 49−50. doi: 10.19532/j.cnki.cn21-1265/tq.1999.05.013

    Huang K M,Jiang L S,Zhu Y F. Removing basic nitrogen compounds from lube oil by complexation[J]. Lubricating Oil, 1999, 14(5): 49−50. doi: 10.19532/j.cnki.cn21-1265/tq.1999.05.013

    [15]

    陈月珠,吴艳萍,周文勇,等. 润滑油基础油中含氮化合物的分离[J]. 石油学报(石油加工), 1996, 12(2): 61−68.

    Chen Y Z,Wu Y P,Zhou W Y,et al. Separation of nitrogen compounds from lube base oils[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1996, 12(2): 61−68.

    [16]

    李德生. 凯氏定氮应用领域评议[J]. 计量与测试技术, 2009, 36(10): 15,17. doi: 10.3969/j.issn.1004-6941.2009.10.009

    Li D S. Appraisal based on applied field of Kjeldahl determination[J]. Metrology & Measurement Technique, 2009, 36(10): 15,17. doi: 10.3969/j.issn.1004-6941.2009.10.009

    [17]

    Hoering T C,Moore H E. The isotopic composition of the nitrogen in natural gases and associated crude oils[J]. Journal of the American Chemical Society, 1960, 82(13): 225−232.

    [18]

    Wada E,Kadonaga T,Matsuo S. 15N abundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint[J]. Geochemical Journal, 1975, 9(3): 139−148. doi: 10.2343/geochemj.9.139

    [19]

    Delwiche C C,Steyn P L. Nitrogen isotope fractionation in soils and microbial reactions[J]. Environmental Science & Technology, 1970, 4(11): 929−935.

    [20]

    陈传平,梅博文,曹亚澄. 原油氮同位素样品制备及其比值分析[J]. 分析化学, 2002, 30(5): 640. doi: 10.3321/j.issn:0253-3820.2002.05.038

    Chen C P,Mei B W,Cao Y C. Crude oil nitrogen isotope sample preparation and ratio analysis[J]. Chinese Journal of Analytical Chemistry, 2002, 30(5): 640. doi: 10.3321/j.issn:0253-3820.2002.05.038

    [21]

    范志影,周陈维. 杜马斯燃烧定氮法在农产品品质检测中的应用[J]. 现代科学仪器, 2006(1): 45−46. doi: 10.3969/j.issn.1003-8892.2006.01.014

    Fan Z Y,Zhou C W. Application of Dumas combustion method for nitrogen analysis on agricultural products[J]. Modern Scientific Instruments, 2006(1): 45−46. doi: 10.3969/j.issn.1003-8892.2006.01.014

    [22]

    徐丽,邢蓝田,王鑫,等. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定[J]. 岩矿测试, 2018, 37(1): 15−20. doi: 10.15898/j.cnki.11-2131/td.201701130005

    Xu L,Xing L T,Wang X,et al. Study on the optimal reaction temperature and sampling weight for measurement of carbon and nitrogen isotope ratio by elemental analysis-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2018, 37(1): 15−20. doi: 10.15898/j.cnki.11-2131/td.201701130005

    [23]

    王旭,张福松,丁仲礼. EA-Conflo-IRMS联机系统的燃烧转化率漂移及其对氮、碳同位素比值测定的影响[J]. 质谱学报, 2006, 27(2): 104−109. doi: 10.3969/j.issn.1004-2997.2006.02.009

    Wang X,Zhang F S,Ding Z L. Changes in the combustion transformation capability of EA-Conflo-IRMS and their impacts on nitrogen and carbon isotope ratio measurement[J]. Journal of Chinese Mass Spectrometry Society, 2006, 27(2): 104−109. doi: 10.3969/j.issn.1004-2997.2006.02.009

    [24]

    朱光有,刘星旺,朱永峰,等. 塔里木盆地哈拉哈塘地区复杂油气藏特征及其成藏机制[J]. 矿物岩石地球化学通报, 2013, 32(2): 231−242. doi: 10.3969/j.issn.1007-2802.2013.02.009

    Zhu G Y,Liu X W,Zhu Y F,et al. The characteristics and the accumulation mechanism of complex reservoirs in the Hanilcatam area,Tarim Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2013, 32(2): 231−242. doi: 10.3969/j.issn.1007-2802.2013.02.009

    [25]

    倪新锋,张丽娟,沈安江,等. 塔里木盆地英买力—哈拉哈塘地区奥陶系碳酸盐岩岩溶型储层特征及成因[J]. 沉积学报, 2011, 29(3): 465−474. doi: 10.14027/j.cnki.cjxb.2011.03.001

    Ni X F,Zhang L J,Zhu A J,et al. Characteristics and genesis of Ordovician carbonate karst reservoir in Yingmaili—Halahatang area,Tarim Basin[J]. Acta Sedimentologica Sinica, 2011, 29(3): 465−474. doi: 10.14027/j.cnki.cjxb.2011.03.001

    [26]

    付金华,郭雯,李士祥,等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学, 2021, 32(12): 1749−1761.

    Fu J H,Guo W,Li S X,et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation,Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749−1761.

    [27]

    付锁堂,付金华,牛小兵,等. 庆城油田成藏条件及勘探开发关键技术[J]. 石油学报, 2020, 41(7): 777−795. doi: 10.7623/syxb202007001

    Fu S T,Fu J H,Niu X B,et al. Accumulation conditions and key exploration and development technologies in Qingcheng oil field[J]. Acta Petrolei Sinica, 2020, 41(7): 777−795. doi: 10.7623/syxb202007001

    [28]

    陈践发,徐学敏,师生宝. 不同沉积环境下原油氮同位素的地球化学特征[J]. 中国石油大学学报(自然科学版), 2015, 39(5): 1−6. doi: 10.3969/j.issn.1673-5005.2015.05.001

    Chen J F,Xu X M,Shi S B. Geochemical characteristics of nitrogen isotope of crude oils in different depositional environments[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(5): 1−6. doi: 10.3969/j.issn.1673-5005.2015.05.001

    [29]

    徐学敏,陈践发,师生宝,等. 原油不同极性含氮化合物的氮同位素组成特征[J]. 矿物岩石地球化学通报, 2017, 36(1): 150−153. doi: 10.3969/j.issn.1007-2802.2017.01.017

    Xu X M,Chen J F,Shi S B,et al. Nitrogen isotope distribution characteristics of different polar nitrogen compounds in crude oil[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2017, 36(1): 150−153. doi: 10.3969/j.issn.1007-2802.2017.01.017

    [30]

    王艺繁. 塔里木台盆区深层原油的碳氮同位素地球化学特征及意义[D]. 北京: 中国石油大学(北京), 2018.

    Wang Y F. Application of nitrogen and carbon isotope as proxies for oil source: A research into deep crude oil in the Tarim Basin, NW China[D]. Beijing: China University of Petroleum (Beijing), 2018.

    [31]

    Oldenburg T B P,Larter S R,Huang H. Nitrogen isotope systematics of petroleum fractions of differing polarity-neutral versus basic compounds[J]. Organic Geochemistry, 2007, 38(10): 1789−1794. doi: 10.1016/j.orggeochem.2007.05.016

    [32]

    Stüeken E E,Kipp M A,Koehler M C,et al. The evolution of Earth’s biogeochemical nitrogen cycle[J]. Earth—Science Reviews, 2016, 160: 220−239. doi: 10.1016/j.earscirev.2016.07.007

    [33]

    Riddle B,Fox J,Mahoney D T,et al. Considerations on the use of carbon and nitrogen isotopic ratios for sediment fingerprinting[J]. Science of The Total Environment, 2022, 817: 152640. doi: 10.1016/j.scitotenv.2021.152640

    [34]

    Li M,Luo Q Y,Chen J F,et al. Redox conditions and nitrogen cycling in the late Ordovician Yangtze Sea (South China)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2021, 567: 110305.

    [35]

    Sigman D M. Nitrogen isotopes in the ocean[M]//Encyclopedia of Ocean Sciences (The 3rd edition), 2019: 263−278.

    [36]

    Zerkle A L,Mikhail S. The geobiological nitrogen cycle:From microbes to the mantle[J]. Geobiology, 2017, 15(3): 343−352. doi: 10.1111/gbi.12228

    [37]

    Schimmelmann A,Lis G P. Nitrogen isotopic exchange during maturation of organic matter[J]. Organic Geochemistry, 2010, 41(1): 63−70. doi: 10.1016/j.orggeochem.2009.01.005

    [38]

    Rivera K T,Puckette J,Quan T M. Evaluation of redox versus thermal maturity controls on δ15N in organic rich shales:A case study of the Woodford Shale,Anadarko Basin,Oklahoma,USA[J]. Organic Geochemistry, 2015, 83-84: 127−139. doi: 10.1016/j.orggeochem.2015.03.005

    [39]

    Williams L B,Ferrell R E,Hutcheon I,et al. Nitrogen isotope geochemistry of organic matter and minerals during diagenesis and hydrocarbon migration[J]. Geochimica et Cosmochimica Acta, 1995, 59(4): 765−779. doi: 10.1016/0016-7037(95)00005-K

    [40]

    Krooss B M,Friberg L,Gensterblum Y,et al. Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks[J]. International Journal of Earth Sciences, 2005, 94(5-6): 1023−1038. doi: 10.1007/s00531-005-0012-3

    [41]

    Xie P,Dai S,Hower J C,et al. Nitrogen isotopic compositions in NH4+-mineral-bearing coal:Origin and isotope fractionation[J]. Chemical Geology, 2021, 559: 119946. doi: 10.1016/j.chemgeo.2020.119946

  • 加载中

(2)

(3)

计量
  • 文章访问数:  1017
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2022-06-30
修回日期:  2023-01-18
录用日期:  2023-04-04
刊出日期:  2023-08-31

目录