中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

顶空/气相色谱-质谱法同时测定印染废水中吡啶、苯胺和硝基苯

吴悦, 赖永忠, 陆国永, 林晓昇, 梁树生, 许文帅. 顶空/气相色谱-质谱法同时测定印染废水中吡啶、苯胺和硝基苯[J]. 岩矿测试, 2023, 42(4): 781-792. doi: 10.15898/j.ykcs.202303280041
引用本文: 吴悦, 赖永忠, 陆国永, 林晓昇, 梁树生, 许文帅. 顶空/气相色谱-质谱法同时测定印染废水中吡啶、苯胺和硝基苯[J]. 岩矿测试, 2023, 42(4): 781-792. doi: 10.15898/j.ykcs.202303280041
WU Yue, LAI Yongzhong, LU Guoyong, LIN Xiaosheng, LIANG Shusheng, XU Wenshuai. Simultaneous Determination of Pyridine, Aniline and Nitrobenzene in Printing and Dyeing Wastewater by Headspace Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(4): 781-792. doi: 10.15898/j.ykcs.202303280041
Citation: WU Yue, LAI Yongzhong, LU Guoyong, LIN Xiaosheng, LIANG Shusheng, XU Wenshuai. Simultaneous Determination of Pyridine, Aniline and Nitrobenzene in Printing and Dyeing Wastewater by Headspace Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(4): 781-792. doi: 10.15898/j.ykcs.202303280041

顶空/气相色谱-质谱法同时测定印染废水中吡啶、苯胺和硝基苯

  • 基金项目: 广东省高职院校高水平专业群建设项目(GSPZYQ2021004);广东省职业技术教育学会第四届理事会2023—2024年度科研规划课题(202212G237);2023年广东省科技创新战略专项项目(STKJ2023026,STKJ2023027)
详细信息
    作者简介: 吴悦,硕士,讲师,研究方向为给水净化技术与水污染控制。E-mail:5.yue@163.com
    通讯作者: 赖永忠,博士,高级工程师,研究方向为环境科学和海洋生物学。E-mail:yzhlai@163.com
  • 中图分类号: X832; O657.63

Simultaneous Determination of Pyridine, Aniline and Nitrobenzene in Printing and Dyeing Wastewater by Headspace Gas Chromatography-Mass Spectrometry

More Information
  • 吡啶、苯胺和硝基苯是重要的化工原料,因其低沸点、易挥发和极性强等特征,极易进入环境水体,并造成污染。基体复杂的印染废水含吡啶、苯胺和硝基苯等多种致癌的含氮有机污染物,排入外环境的印染废水将通过食物链影响人类健康,建立印染废水中三种化合物同时检测的方法对于保障工业外排水质安全至关重要。本文通过优化顶空条件等方法参数,建立了同时检测印染废水中吡啶、苯胺和硝基苯的顶空/气相色谱-质谱法(HS/GC-MS)。取10.0mL样品至预加有4.0g碳酸钠的20mL顶空瓶内,再加入总体积为50µL甲醇,在80℃顶空进样器中平衡60min,最后采用GC-MS检测和外标法定量。结果表明,吡啶(苯胺)和硝基苯的线性范围分别介于1.00~30.0µg/L和0.50~15.0µg/L,相关系数均大于0.992,检出限为0.15~0.93µg/L;对实验室空白和纺织产业园区污水处理厂排放的印染废水进行加标回收检测,平均回收率分别为73.6%~105.8%和67.2%~89.9%,相对标准偏差(RSD)分别为5.9%~14.2%(n=8)和2.2%~11.5%(n=6)。采用本方法检测纺织产业园区印染废水中吡啶、苯胺和硝基苯的浓度分别为1.10~1.13µg/L、1.71~5.36µg/L和未检出~0.19µg/L。该方法提出了有利于提高方法灵敏度的措施,例如加入适量的甲醇和碳酸钠,以及提高样品平衡温度,为印染废水中吡啶、苯胺和硝基苯的同时监控提供技术支撑。

  • 加载中
  • 图 1  三种极性挥发性有机物的色谱图

    Figure 1. 

    图 2  不同碳酸钠含量下吡啶、苯胺和硝基苯的定量离子峰面积的变化

    Figure 2. 

    图 3  平衡温度与吡啶、苯胺和硝基苯的定量离子峰面积的关系

    Figure 3. 

    图 4  不同甲醇含量下吡啶、苯胺和硝基苯的定量离子峰面积的变化

    Figure 4. 

    图 5  平衡时间对吡啶、苯胺和硝基苯定量离子峰面积的影响

    Figure 5. 

    表 1  校准曲线强制过原点对实验室空白结果的影响

    Table 1.  Effects of forced through origin of the calibration curves on the results of blank samples.

    实验室
    空白
    吡啶(µg/L)苯胺(µg/L)硝基苯(µg/L)
    非强制
    过原点
    强制
    过原点
    单点
    校正
    非强制
    过原点
    强制
    过原点
    单点
    校正
    非强制
    过原点
    强制
    过原点
    单点
    校正
    第一次试验
    n=6)
    0.64a 0.63b 0.51 0.68aacc 0.11 0.14
    第二次试验
    n=8)
    0.82 0.80 0.65 0.66aacc 0.09b 0.11 0.60aacc 0.05bb 0.08
    第三次试验
    n=8)
    0.83a 0.81b 0.67 0.83aacc 0.26bb 0.32 0.56aacc 0.01 0.01

    注:“—”表示无硝基苯的定量离子峰;a表示非强制过原点校准曲线的测定值与单点校正法(吡啶、苯胺和硝基苯的校正浓度分别为1.00、1.00和0.50µg/L,以下同)结果间存在显著性差异(P<0.05),aa表示他们间存在极显著性差异(P<0.01);b表示强制过原点校准曲线的测定值与单点校正法结果间存在显著性差异(P<0.05),bb表示它们之间存在极显著性差异(P<0.01);cc表示非强制过原点校准曲线的测定值与强制过原点校准曲线测定值间存在极显著性差异(P<0.01)。

    下载: 导出CSV

    表 2  优化后方法特性指标(n=10)

    Table 2.  The corresponding characteristic indexes of optimized methods (n=10).

    化合物配制浓度
    (μg/L)
    测定值
    (μg/L)
    标准偏差检出限
    (μg/L)
    检测下限
    (μg/L)
    污染物排放限值
    (μg/L)
    标准限值d
    (μg/L)
    吡啶2.003.060.3290.933.72100a,2000b200
    苯胺2.002.380.1710.491.96500a,b100
    1000c
    硝基苯1.001.080.0500.150.602000b17

    注:苯胺、硝基苯的污染物排放限值分别为苯胺类化合物和硝基苯类化合物的综合排放限值;a污染物排放限值来自《杂环类农药工业水污染物排放标准》(GB 21523—2008);b表示污染物排放限值来自《石油化学工业污染物排放标准》(GB 31571—2015);c表示污染物排放限值来自《纺织染整工业水污染物排放标准》(GB 4287—2012);d表示标准限值来自《地表水环境质量标准》(GB 3838—2002),其中苯胺和硝基苯的标准限值分别只针对苯胺和硝基苯。

    下载: 导出CSV

    表 3  实验室空白中3个水平下的加标样品准确度、精密度结果 (n=8)

    Table 3.  Accuracy and precision results of blank samples spiked with three levels (n=8).

    化合物配制浓度
    (μg/L)
    测定值
    (μg/L)
    回收率
    (%)
    RSD
    (%)
    吡啶5.004.7194.214.2
    10.009.4894.811.6
    20.0021.09105.58.2
    苯胺5.004.1683.212.8
    10.008.9489.411.5
    20.0021.15105.88.8
    硝基苯2.501.8473.613.0
    5.004.1983.810.6
    10.009.9799.75.9
    下载: 导出CSV

    表 4  汕头市潮阳区纺织印染环保综合处理中心污水处理厂排放印染废水中3个水平下的加标回收率 (n=6)

    Table 4.  Recoveries and RSDs of the three organic compounds at three levels in printing and dyeing wastewater from the wastewater treatment plant of the Textile Printing and Dyeing Environmental Protection Comprehensive Treatment Center in Chaoyang District, Shantou City (n=6).

    化合物本底浓度
    (μg/L)
    加标浓度
    (μg/L)
    测定值
    (μg/L)
    回收率
    (%)
    RSD
    (%)
    吡啶1.135.005.3384.011.5
    10.008.7175.86.3
    20.0018.1084.95.5
    苯胺5.365.009.7387.49.9
    10.0012.4771.16.9
    20.0022.3284.84.2
    硝基苯ND2.501.9876.47.3
    5.003.6772.03.8
    10.008.6285.56.3
    注:“ND”表示结果小于方法检出限。
    下载: 导出CSV

    表 5  汕头市潮南区纺织产业园区污水处理厂排放印染废水中3个水平下的加标回收率 (n=6)

    Table 5.  Recoveries and RSDs of the three organic compounds at three levels in printing and dyeing wastewater from Sewage Treatment Plant of the Textile Industrial Park,Chaonan District, Shantou City (n=6).

    化合物本底浓度
    (μg/L)
    加标浓度
    (μg/L)
    测定值
    (μg/L)
    回收率
    (%)
    RSD
    (%)
    吡啶1.105.004.7673.23.8
    10.009.2481.410.9
    20.0018.4386.73.7
    苯胺1.715.005.4073.82.8
    10.009.5378.29.5
    20.0019.2187.55.1
    硝基苯0.192.501.8767.22.5
    5.003.9775.69.5
    10.009.1889.92.2
    下载: 导出CSV

    表 6  本研究与文献报道和标准检测方法的比较

    Table 6.  Comparison of this study with literature reports and standards.

    化合物样品前处理分析检测方法参考文献或
    标准检测方法
    样品体积
    (mL)
    前处理方法
    及主要过程
    主要辅助试剂
    及添加量
    方法名称方法检出限
    (µg/L)
    吡啶10.0顶空碳酸钠(4.0g)GC-MS0.93本研究
    10.0顶空氯化钠(4g)GC-FID4.424
    10.0顶空氯化钠(2g)GC-FID1622
    10.0顶空氯化钠(3g)GC-FID2025-26
    10.0顶空氯化钠(3g)GC-FID2610
    10.0顶空氯化钠(4g)GC-FID308
    10.0顶空碳酸钠(4.0g)GC-FID2021
    10.0顶空碳酸钠(5.0g)GC-MS0.223
    10.0顶空氯化钠(3g)GC-FID30HJ 1072—2019
    苯胺10.0顶空碳酸钠(4.0g)GC-MS0.49本研究
    10.0顶空氢氧化钠(5g)GC-FID213
    20.0顶空氯化钠(10g)GC-MS5.8027
    1000液液萃取二氯甲烷(145mL)+
    正己烷(134mL)+
    异丙醇(2.5mL)+
    氯化钠(30g)
    GC-MS0.057HJ 822—2017
    0.010微孔滤膜过滤,
    直接进样
    LC-TQMS0.2HJ 1048—2019
    100固相萃取乙酸(5mL)LC-TQMS0.02HJ 1048—2019
    硝基苯10.0顶空碳酸钠(4.0g)GC-MS0.15本研究
    40.0顶空GC-ECD<2.528
    10.0顶空氯化钠(4.0g)GC-FID1029
    10.0顶空氯化钠(4g)GC-MS7.630
    200液液萃取甲苯(40mL)GC-ECD0.17HJ 648—2013
    1000固相萃取正己烷(7.5mL)+
    丙酮(2.5mL)
    GC-ECD0.032HJ 648—2013
    1000液液萃取二氯甲烷(89mL)+
    正己烷(18mL)
    GC-MS0.04HJ 716—2014
    1000固相萃取二氯甲烷(15mL)GC-MS0.04HJ 716—2014

    注:GC-FID表示配氢火焰离子化检测器的气相色谱法;GC-ECD表示配电子捕获检测器的气相色谱法;LC-TQMS表示液相色谱-三重四极杆质谱法。

    下载: 导出CSV
  • [1]

    冯越, 陈丽丽, 张童, 等. 苯胺的健康效应研究进展[J]. 中华预防医学杂志, 2020, 54(2): 213−218.

    Feng Y, Chen L L, Zhang T, et al. Research progress on health effects of aniline[J]. Chinese Journal of Preventive Medicine, 2020, 54(2): 213−218.

    [2]

    张琪, 刘玉香. 吡啶废水新型微生物法处理研究进展[J]. 工业水处理, 2021, 41(3): 17−22.

    Zhang Q, Liu Y X. Research progress in the treatment of pyridine wastewater by novel microorganism method[J]. Industrial Water Treatment, 2021, 41(3): 17−22.

    [3]

    Yin W, Wu J, Li P, et al. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater:The effects of pH, iron dosage, oxygen and common dissolved anions[J]. Chemical Engineering Journal, 2012, 184(3): 198−204.

    [4]

    Wei T, Hong M, Liu L. Study on the removal effect and influencing factors of nitrobenzene reduction by iron carbonate precipitates[J]. Environmental Science and Pollution Research, 2018, 25(27): 27112−27121. doi: 10.1007/s11356-018-2621-y

    [5]

    王鹏莺, 苏冰琴, 彭娅娅, 等. 过一硫酸盐直接氧化降解吡啶的反应条件和机制[J]. 中国给水排水, 2022, 38(13): 64−70. doi: 10.19853/j.zgjsps.1000-4602.2022.13.011

    Wang P Y, Su B Q, Peng Y Y, et al. Reaction conditions and mechanism of peroxymonosulfate for direct oxidative degradation of pyridine[J]. China Water & Wastewater, 2022, 38(13): 64−70. doi: 10.19853/j.zgjsps.1000-4602.2022.13.011

    [6]

    苏冰琴, 温宇涛, 林昱廷, 等. 改性活性炭纤维活化过硫酸盐深度处理焦化废水及降解吡啶[J]. 中国环境科学, 2023, 43(2): 576−591.

    Su B Q, Wen Y T, Lin Y T, et al. Advanced treatment of coking wastewater and degradation of pyridine using modified activated carbon fiber activating peroxymonosulfate[J]. China Environmental Science, 2023, 43(2): 576−591.

    [7]

    冯尚华, 蒋波, 张建平, 等. 含苯胺废水处理技术进展[J]. 工业水处理, 2023, 43(6): 32−44. doi: 10.19965/j.cnki.iwt.2021-0387

    Feng S H, Jiang B, Zhang J P, et al. Progress in treatment of benzenamine wastewater[J]. Industrial Water Treatment, 2023, 43(6): 32−44. doi: 10.19965/j.cnki.iwt.2021-0387

    [8]

    钱玉亭, 颜慧, 陆野. 顶空-毛细管柱气相色谱法测定水中吡啶[J]. 环境科学与管理, 2011, 36(9): 125−126,155.

    Qian Y T, Yan H, Lu Y. Determination of pyridine in water by headspace-capillary GC-FID[J]. Environmental Science and Management, 2011, 36(9): 125−126,155.

    [9]

    唐访良, 张明, 徐建芬. 直接进样-气相色谱法测定废水中5种含氮化合物[J]. 理化检验(化学分册), 2019, 55(5): 526−529.

    Tang F L, Zhang M, Xu J F. GC determination of 5 nitrogenous compounds in wastewater with direct injection[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(5): 526−529.

    [10]

    李海燕. 顶空-毛细管气相色谱法同步测定水中吡啶丙酮乙腈[J]. 中国环境监测, 2011, 27(2): 56−58. doi: 10.3969/j.issn.1002-6002.2011.02.014

    Li H Y. Headspace-capillary gas chromatography determination of pyridine[J]. Environmental Monitoring in China, 2011, 27(2): 56−58. doi: 10.3969/j.issn.1002-6002.2011.02.014

    [11]

    李少飞, 孙延康. 高效液相色谱法直接测定废水中苯胺含量[J]. 能源环境保护, 2017, 31(2): 63−64,22.

    Li S F, Sun Y K. Direct determination of aniline in wastewater by HPLC[J]. Energy Environmental Protection, 2017, 31(2): 63−64,22.

    [12]

    李瑞琴. 高压液相色谱法测定废水中的苯胺和硝基苯胺[J]. 环境科学研究, 1998, 11(6): 34−36. doi: 10.3321/j.issn:1001-6929.1998.06.011

    Li R Q. Determination of aniline and nitroanilines in wastewater by HPLC[J]. Research of Environmental Sciences, 1998, 11(6): 34−36. doi: 10.3321/j.issn:1001-6929.1998.06.011

    [13]

    吴鹏, 缪建军, 於香湘. 顶空气相色谱法测定水中苯胺[J]. 中国环境监测, 2013, 29(6): 99−101.

    Wu P, Miao J J, Yu X X. Determination of aniline in water with head-space gas-chromatography[J]. Environmental Monitoring in China, 2013, 29(6): 99−101.

    [14]

    黄毅, 饶竹, 刘艳, 等. 超高效液相色谱法直接快速测定环境水样中硝基苯和苯胺[J]. 岩矿测试, 2012, 31(4): 666−671.

    Huang Y, Rao Z, Liu Y, et al. Direct and rapid determination of nitrobenzene and aniline in environmental water by ultra performance liquid chromatography[J]. Rock and Mineral Analysis, 2012, 31(4): 666−671.

    [15]

    韩方岸, 陈钧, 将兆峰, 等. 中国沿海三省主要饮用水源有机物监测[J]. 中国环境监测, 2012, 28(1): 60−65.

    Han F A, Chen J, Jiang Z F, et al. Monitoring the organic compounds of main source of drinking water in three coastal province of China[J]. Environmental Monitoring in China, 2012, 28(1): 60−65.

    [16]

    宋权威, 赵兴达, 吴百春, 等. 高效液相色谱法测定炼化场地5种特征污染物[J]. 环境科学与技术, 2020, 43(S2): 138−141. doi: 10.19672/j.cnki.1003-6504.2020.S2.021

    Song Q W, Zhao X D, Wu B C, et al. Determination of five characteristic pollutants at the refinery by high performance liquid chromatography[J]. Environmental Science & Technology, 2020, 43(S2): 138−141. doi: 10.19672/j.cnki.1003-6504.2020.S2.021

    [17]

    万伟, 袁蕙, 马苏甜, 等. 吹扫捕集/气相色谱-质谱法测定石油炼制工艺废催化剂浸出液中挥发性有机物[J]. 环境化学, 2022, 41(11): 3695−3704. doi: 10.7524/j.issn.0254-6108.2021070807

    Wan W, Yuan H, Ma S T, et al. Determination of volatile organic compounds in waste catalyst leaching liquor in petroleum refining process using P&T-GC-MS method[J]. Environmental Chemistry, 2022, 41(11): 3695−3704. doi: 10.7524/j.issn.0254-6108.2021070807

    [18]

    刘玉龙, 邵志国, 张晓飞, 等. 顶空气相色谱-四极杆/静电场轨道阱高分辨质谱法测定复杂基体水样中挥发性有机物[J]. 分析化学, 2023, 51(4): 589−599.

    Liu Y L, Shao Z G, Zhang X F, et al. Determination of volatile organic compounds in complex matrix waters by headspace-gas chromatography-quadrupole/orbitrap high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2023, 51(4): 589−599.

    [19]

    Tabbal S, El Aroussi B, Bouchard M, et al. A new headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry method for the simultaneous quantification of 21 microbial volatile organic compounds in urine and blood[J]. Chemosphere, 2022, 296: 133901. doi: 10.1016/j.chemosphere.2022.133901

    [20]

    陆国永, 吴悦, 赖永忠. 顶空固相微萃取法同时分析源水中5种极性挥发性有机物[J]. 中国给水排水, 2017, 33(12): 123−129.

    Lu G Y, Wu Y, Lai Y Z. Simultaneous detection of 5 kinds of polar volatile organics in drinking source water with head space-solid phase microextraction[J]. China Water & Wastewater, 2017, 33(12): 123−129.

    [21]

    缪建洋, 李丽. 顶空气相色谱法测定地表水中吡啶[J]. 环境保护科学, 2004, 30(6): 45−46. doi: 10.16803/j.cnki.issn.1004-6216.2004.06.015

    Miu J Y, Li L. Determination of pyridine in surface water by head-space gas chromatography[J]. Environmental Protection Science, 2004, 30(6): 45−46. doi: 10.16803/j.cnki.issn.1004-6216.2004.06.015

    [22]

    李江, 陈华, 苏慕珂. 影响顶空-气相色谱法测定水中吡啶准确度的关键因素探讨[J]. 环境监测管理与技术, 2016, 28(2): 69−71.

    Li J, Chen H, Su M K. Discussion on accuracy in determination of pyridine in water by headspace gas chromatography[J]. The Administration and Technique of Environmental Monitoring, 2016, 28(2): 69−71.

    [23]

    王钊, 徐晓宇, 陈任翔, 等. 顶空气相色谱-质谱联用测定饮用水中吡啶[J]. 分析试验室, 2016, 35(12): 1386−1388. doi: 10.13595/j.cnki.issn1000-0720.2016.0312

    Wang Z, Xu X Y, Chen R X, et al. Determination of pyridine in drinking water by headspace gas chromatography with mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(12): 1386−1388. doi: 10.13595/j.cnki.issn1000-0720.2016.0312

    [24]

    郑锦辉, 李津津. 顶空气相色谱法测定水中乙醛、丙烯醛、丙烯腈和吡啶[J]. 贵州师范大学学报(自然科学版), 2016, 34(3): 85−88. doi: 10.3969/j.issn.1004-5570.2016.03.017

    Zheng J H, Li J J. Determination of acetaldehyde, acrolein, acrylonitrile and pyridine in water with headspace gas chromatography[J]. Journal of Guizhou Normal University (Natural Sciences), 2016, 34(3): 85−88. doi: 10.3969/j.issn.1004-5570.2016.03.017

    [25]

    罗毅, 姜建彪, 常青. 顶空-气相色谱法与吹扫捕集-气质联用法测定水中乙醛、丙烯醛、丙烯腈、吡啶的方法比较[J]. 河北工业科技, 2017, 34(3): 208−213.

    Luo Y, Jiang J B, Chang Q. Comparison of headspace-GC with purge and trap-GC/MS methods in determination of acetaldehyde, acrolein, acrylonitrile and pyridine[J]. Hebei Journal of Industrial Science and Technology, 2017, 34(3): 208−213.

    [26]

    普学伟, 艾德平, 杨春涛, 等. 顶空-气相色谱法测定水中乙醛、丙烯醛、丙烯腈和吡啶[J]. 干旱环境监测, 2023, 37(1): 1−4,44.

    Pu X W, Ai D P, Yang C T, et al. Determination of acetaldehyde, acrolein, acrylonitrile and pyridine in water by headspace-gas chromatography[J]. Arid Environmental Monitoring, 2023, 37(1): 1−4,44.

    [27]

    吕天峰, 王超, 滕恩江, 等. 便携式GC-MS快速测定水中苯胺[J]. 环境监测管理与技术, 2013, 25(6): 34−36. doi: 10.3969/j.issn.1006-2009.2013.06.012

    Lyu T F, Wang C, Teng E J, et al. Fast determination of aniline in water by the portable GC-MS[J]. The Administration and Technique of Environmental Monitoring, 2013, 25(6): 34−36. doi: 10.3969/j.issn.1006-2009.2013.06.012

    [28]

    韩长绵. 填充柱(ECD)-顶空气相色谱法测定水和废水中硝基苯、硝基甲苯和硝基氯苯[J]. 环境科学与技术, 1996, 19(2): 18−22.

    Han C M. Determination of nitrobenzene, nitrotoluene, and nitrochlorobenzene in water and wastewater by packed column (ECD) headspace gas chromatography[J]. Environmental Science and Technology, 1996, 19(2): 18−22.

    [29]

    张丰, 刘晓颖, 麦永乐. 顶空-气相色谱法测定水中苯系物和硝基苯类化合物[J]. 供水技术, 2015, 9(6): 49−53.

    Zhang F, Liu X Y, Mai Y L. Determination of benzenes and nitrobenzenes in water by headspace gas chromatography[J]. Water Technology, 2015, 9(6): 49−53.

    [30]

    占美君, 赖永忠. 静态顶空-气相色谱/质谱法同时检测环境水体中59种挥发性有机物[J]. 分析测试技术与仪器, 2016, 22(4): 250−260. doi: 10.16495/j.1006-3757.2016.04.010

    Zhan M J, Lai Y Z. Simultaneous determination of 59 volatile organic compounds in environmental water using headspace sampling method coupled to gas chromatography-mass spectrometry[J]. Analysis and Testing Technology and Instruments, 2016, 22(4): 250−260. doi: 10.16495/j.1006-3757.2016.04.010

    [31]

    熊茂富, 任敏, 杜伊, 等. 顶空固相微萃取-气相色谱-质谱联用法同时测定湖库水中12种氯苯甲醚的条件优化[J]. 岩矿测试, 2019, 38(6): 724−733. doi: 10.15898/j.cnki.11-2131/td.201901210016

    Xiong M F, Ren M, Du Y, et al. Simultaneous determination of 12 chloroanisoles in lake reservoir waters by headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 724−733. doi: 10.15898/j.cnki.11-2131/td.201901210016

    [32]

    赖永忠. 顶空进样-固相微萃取测定饮用水源水中吡啶[J]. 岩矿测试, 2011, 30(5): 596−600. doi: 10.3969/j.issn.0254-5357.2011.05.015

    Lai Y Z. Determination of pyridine in drinking source water by head space sampling-solid phase microextraction[J]. Rock and Mineral Analysis, 2011, 30(5): 596−600. doi: 10.3969/j.issn.0254-5357.2011.05.015

    [33]

    吴悦, 赖永忠, 陆国永, 等. 对水体中挥发性有机物分析的空白污染来源及解决措施的探讨[J]. 冶金分析, 2023, 43(2): 14−22. doi: 10.13228/j.boyuan.issn1000-7571.011894

    Wu Y, Lai Y Z, Lu G Y, et al. Discussion on the sources and countermeasures of blank pollution in determination of volatile organic compounds in water samples[J]. Metallurgical Analysis, 2023, 43(2): 14−22. doi: 10.13228/j.boyuan.issn1000-7571.011894

  • 加载中

(5)

(6)

计量
  • 文章访问数:  932
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2023-03-28
修回日期:  2023-06-02
录用日期:  2023-06-16
刊出日期:  2023-08-31

目录