中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析

孔维恒, 曾令伟, 饶宇, 陈莎, 王旭, 杨燕婷, 段忆翔, 樊庆文. 基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析[J]. 岩矿测试, 2023, 42(4): 760-770. doi: 10.15898/j.ykcs.202212190234
引用本文: 孔维恒, 曾令伟, 饶宇, 陈莎, 王旭, 杨燕婷, 段忆翔, 樊庆文. 基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析[J]. 岩矿测试, 2023, 42(4): 760-770. doi: 10.15898/j.ykcs.202212190234
KONG Weiheng, ZENG Lingwei, RAO Yu, CHEN Sha, WANG Xu, YANG Yanting, DUAN Yixiang, FAN Qingwen. Laser-induced Breakdown Spectroscopy Based on Pre-classification Strategy for Quantitative Analysis of Rock Samples[J]. Rock and Mineral Analysis, 2023, 42(4): 760-770. doi: 10.15898/j.ykcs.202212190234
Citation: KONG Weiheng, ZENG Lingwei, RAO Yu, CHEN Sha, WANG Xu, YANG Yanting, DUAN Yixiang, FAN Qingwen. Laser-induced Breakdown Spectroscopy Based on Pre-classification Strategy for Quantitative Analysis of Rock Samples[J]. Rock and Mineral Analysis, 2023, 42(4): 760-770. doi: 10.15898/j.ykcs.202212190234

基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析

  • 基金项目: 四川省科技厅重点研发项目(2022YFG0235)
详细信息
    作者简介: 孔维恒,硕士研究生,主要研究方向为基于激光诱导击穿光谱的岩石定性定量分析方法。E-mail:kongweiheng2021@163.com
    通讯作者: 段忆翔,博士,教授,主要研究方向为激光光谱、新型质谱分析方法及仪器的开发。E-mail:yduan@scu.edu.cn 樊庆文,博士,研究员,主要研究方向为机械设计、分析仪器设计、机电控制、图像处理技术及应用。E-mail:fanqingwen@scu.edu.cn
  • 中图分类号: P597.3;O657.31

Laser-induced Breakdown Spectroscopy Based on Pre-classification Strategy for Quantitative Analysis of Rock Samples

More Information
  • 岩石样品中复杂的基质效应严重影响激光诱导击穿光谱(LIBS)定量分析的准确性,其原因是目标元素的发射特性会受到基质的影响,导致其发射强度偏离理想的规律。为提高定量分析准确性,本文提出一种基于岩性基质特性的预分类定量分析方法。该方法首先构建基于k近邻(kNN)与支持向量机(SVM)算法的多层分类模型识别样品的岩性进行分类,通过kNN算法将样品分成碳酸盐和硅酸盐两大类,再利用SVM算法将大类细分成6类,而后针对不同岩性样品分别构建元素定量模型。通过采用预分类方法,可以确保分析的样品具有相似的化学成分,更好地确定分析时的基准线和校准曲线,从而减少分析中的不确定度,提高定量准确性。kNN算法通过交叉验证选取最优的k值,同时使用网格寻优方法确定了SVM算法中关键惩罚参数C和RBF宽度参数γ,利用该分类模型对来自6类岩性的39个国标岩石样品和国标岩石混合样品中的Si、Ca、Mg和K元素进行分析,岩性识别的准确率达100%,保证了后续定量分析的准确性,并针对不同岩性中的不同元素采用了合适的预处理方式提升光谱数据的稳定性。相比于传统标准曲线定量方法,采用预分类方法可以减少不同岩性基质之间的相互影响,从而减小样品基质非均匀性带来的误差。对比两种方法进行数据分析,测试集样品的预测值与参考值相关性分析系数从0.231~0.664提高至0.994~0.999,平均相对标准偏差从38.2%降低至8.6%。与传统定量分析方法相比较,采用预分类定量分析方法所构建模型对上述4种元素定量分析结果准确性有着明显的提高,为提高岩石元素定量分析准确性提供新的思路,拓宽了LIBS技术的实际应用范围。

  • 加载中
  • 图 1  光谱数据处理流程图

    Figure 1. 

    图 2  两种方法在训练集和测试集上的定量分析结果对比

    Figure 2. 

    图 3  (a)未进行预分类和(b)进行预分类两种方法中4种元素的偏差范围的箱线图对比

    Figure 3. 

    表 1  39个国标岩石样品和国标混合岩石样品的种类及Si、Ca、Mg、K元素含量

    Table 1.  Types and elemental contents of Si,Ca,Mg and K for 39 national standard rock samples and national standard mixed rock samples.

    企业编号国标GBW编号岩石类型Si 元素含量(% )Ca元素含量(% )Mg元素含量(% )K元素含量(% )
    ALB1GBW03101a泥页岩23.320.090.280.66
    ALB2*GBWE070146泥页岩21.136.991.043.57
    ALB3GBW07109火成岩25.420.990.396.21
    ALB4GBW07110火成岩29.431.760.504.29
    ALB5*GBW07111火成岩27.853.371.692.90
    ALB6*GBW07121火成岩30.931.900.982.16
    ALB7GBW070157白云岩3.9320.5211.860.03
    ALB8*GBW070158白云岩0.8721.5912.510.01
    ALB9GBW070159白云岩1.0121.5412.550.02
    ALB10*GBW070160白云岩2.4421.0712.260.03
    ALB11GBW07114白云岩0.2921.4413.080.03
    ALB12*GBW07136白云岩3.8523.6210.800.01
    ALB13GBW03107a石灰岩1.8935.781.070.35
    ALB14*GBW03108a石灰岩1.0533.623.490.17
    ALB15*GBW07108石灰岩7.2825.483.110.65
    ALB16GBW07120石灰岩3.1036.500.430.12
    ALB17GBW07127石灰岩0.2634.214.060.04
    ALB18*GBW07128石灰岩0.3429.966.970.04
    ALB19GBW07130石灰岩0.5038.630.850.04
    ALB20GBWE070149石灰岩1.4136.151.730.14
    ALB21*GBWE070150石灰岩2.1532.923.590.03
    ALB22*GBWE070151石灰岩1.5536.591.460.08
    ALB23GBWE070152石灰岩0.6238.420.700.05
    ALB24*GBWE070153石灰岩1.8634.692.590.15
    ALB25*GBWE070154石灰岩1.1037.110.740.14
    ALB26GBWE070155石灰岩0.4538.710.490.07
    ALB27*GBW03109石膏岩0.7828.031.040.08
    ALB28*GBW03109+GBW03111a (1+1)石膏岩0.5425.551.260.05
    ALB29*GBW03109+GBW03111a (2+1)石膏岩0.6226.381.190.06
    ALB30GBW03109+GBW03111a (3+1)石膏岩0.6626.791.150.06
    ALB31GBW03111a石膏岩0.2923.071.480.02
    ALB32*GBW03113砂岩44.680.120.060.56
    ALB33GBW03113+GBW03104 (4+1)砂岩42.240.130.131.07
    ALB34GBW03113+GBW03104 (9+1)砂岩43.460.130.090.81
    ALB35GBW03113+GBW03111a (4+1)砂岩35.804.710.340.45
    ALB36GBW03113+GBW03111a (9+1)砂岩40.242.420.200.50
    ALB37GBW03113+GBW070156 (4+1)砂岩35.827.780.230.45
    ALB38GBW03113+GBW07108 (4+1)砂岩37.205.190.670.57
    ALB39*GBW03114砂岩41.810.240.101.72
    注:“*”代表测试集样品。国标混合样品编号后“()”中的数字代表混合比例。
    下载: 导出CSV

    表 2  六种不同岩性岩石中不同元素的预处理方式结果对比

    Table 2.  Comparison of results of pretreatment methods for different elements in six different lithologies of rocks.

    岩石岩性Si (I) 250.69nmCa (I) 585.745nmMg (I) 516.732nmK (I) 766.489nm
    数据预处理
    方式
    $ {R}^{2} $数据预处理
    方式
    $ {R}^{2} $数据预
    处理方式
    $ {R}^{2} $数据预处理
    方式
    $ {R}^{2} $
    白云岩分通道归一化0.998无数据预处理0.929全谱归一化0.999全谱归一化0.970
    火成岩分通道归一化0.985无数据预处理0.658无数据预处理0.813无数据预处理0.860
    泥页岩分通道归一化0.778全谱归一化0.962分通道归一化0.998MinMax归一化0.778
    石膏岩无数据预处理0.981MinMax归一化0.780分通道归一化0.998无数据预处理0.981
    石灰岩全谱归一化0.977无数据预处理0.929全谱归一化0.984全谱归一化0.985
    砂岩全谱归一化0.977全谱归一化0.750全谱归一化0.925全谱归一化0.934
    下载: 导出CSV

    表 3  传统标准曲线模型和多层模型两种方法在测试集上的定量分析结果的平均相对误差对比

    Table 3.  Comparison of the mean value of relative errors of the quantitative analysis results on the test set between the two methods of traditional standard curve model and multi-layer model.

    元素传统标准曲线模型
    (%)
    多层模型
    (%)
    Si367.414.65
    Ca212.6612.40
    Mg66.6019.90
    K953.8526.95
    下载: 导出CSV
  • [1]

    Guo L B,Zhang D,Sun L X,et al. Development in the application of laser-induced breakdown spectroscopy in recent years:A review[J]. Frontiers of Physics, 2021, 16(2): 1−25.

    [2]

    Harmon R S, Senesi G Sl. Laser-induced breakdown spectroscopy—A geochemical tool for the 21st century[J]. Applied Geochemistry, 2021, 128: 104929.

    [3]

    杨春梅,黄梓芸,覃静雯,等. 应用钻石观测仪-红外光谱仪-激光诱导击穿光谱仪鉴定无机材料充填翡翠[J]. 岩矿测试, 2022, 41(2): 281−290. doi: 10.15898/j.cnki.11-2131/td.202109170123

    Yang C M,Huang Z Y,Qin J W,et al. Identification of jadeite filled with inorganic materials using UV fluorescence,infrared spectroscopy and LIBS techniques[J]. Rock and Mineral Analysis, 2022, 41(2): 281−290. doi: 10.15898/j.cnki.11-2131/td.202109170123

    [4]

    Zhao S X,Zhang L,Hou J J,et al. Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science & Technology, 2018, 20(3): 035502.

    [5]

    Che C,Lin X,Gao X,et al. Accuracy improvement for multimetal analysis by laser-induced breakdown spectroscopy with least squares support vector machine[J]. Microwave and Optical Technology Letters, 2021, 63(6): 1635−1641. doi: 10.1002/mop.32811

    [6]

    Ie A,Kra B,Jia C,et al. Measuring the concentration of gold in ore samples by laser-induced breakdown spectroscopy (LIBS) and comparison with the gravimetry/atomic absorption techniques[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2021, 183: 106256. doi: 10.1016/j.sab.2021.106256

    [7]

    Devangad P,Unnikrishnan V K,Nayak R,et al. Performance evaluation of laser induced breakdown spectroscopy (LIBS) for quantitative analysis of rare earth elements in phosphate glasses[J]. Optical Materials, 2016, 52: 32−37. doi: 10.1016/j.optmat.2015.12.001

    [8]

    Alvarez-Llamas C,Purohit P,Moros J,et al. LIBS-acoustic mid-level fusion scheme for mineral differentiation under terrestrial and martian atmospheric conditions[J]. Analytical Chemistry, 2022, 94(3): 1840−1849. doi: 10.1021/acs.analchem.1c04792

    [9]

    Khan M N,Wang Q Q,Idrees B S,et al. A review on laser-induced breakdown spectroscopy in different cancers diagnosis and classification[J]. Frontiers in Physics, 2022, 10: 821057. doi: 10.3389/fphy.2022.821057

    [10]

    Wan X,Wang P. Analysis of heavy metals in organisms based on an optimized quantitative LIBS[J]. Optik, 2015, 126(19): 1930−1934. doi: 10.1016/j.ijleo.2015.05.039

    [11]

    Wang Q Q,Xiangli W T,Teng G,et al. A brief review of laser-induced breakdown spectroscopy for human and animal soft tissues:Pathological diagnosis and physiological detection[J]. Applied Spectroscopy Reviews, 2021, 56(3): 221−241. doi: 10.1080/05704928.2020.1791151

    [12]

    Chen S,Pei H L,Pisonero J,et al. Simultaneous determination of lithology and major elements in rocks using laser-induced breakdown spectroscopy (LIBS) coupled with a deep convolutional neural network[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 508−516. doi: 10.1039/D1JA00406A

    [13]

    秦燕,徐衍明,侯可军,等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151−161. doi: 10.15898/j.cnki.11-2131/td.201908120120

    Qin Y,Xu Y M,Hou K J,et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151−161. doi: 10.15898/j.cnki.11-2131/td.201908120120

    [14]

    龚仓,丁洋,陆海川,等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348. doi: 10.15898/j.cnki.11-2131/td.202011030136

    Gong C,Ding Y,Lu H C,et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348. doi: 10.15898/j.cnki.11-2131/td.202011030136

    [15]

    Wang X,Chen S,Wu M F,et al. Low-cost smartphone-based LIBS combined with deep learning image processing for accurate lithology recognition[J]. Chemical Communications, 2021, 57(58): 7156−7159. doi: 10.1039/D1CC01844B

    [16]

    Sun C,Xu W J,Tan Y Q,et al. From machine learning to transfer learning in laser-induced breakdown spectroscopy analysis of rocks for Mars exploration[J]. Scientific Reports, 2021, 11(1): 21379. doi: 10.1038/s41598-021-00647-2

    [17]

    Zhang D,Chu Y W,Ma S X,et al. A plasma-image-assisted method for matrix effect correction in laser-induced breakdown spectroscopy[J]. Analytica Chimica Acta, 2020, 1107: 14−22. doi: 10.1016/j.aca.2020.02.003

    [18]

    Agresti J,Indelicato C,Perotti M,et al. Quantitative compositional analyses of calcareous rocks for lime industry using LIBS[J]. Molecules, 2022, 27(6): 1813. doi: 10.3390/molecules27061813

    [19]

    Pagnotta S,Lezzerini M,Campanella B,et al. A new approach to non-linear multivariate calibration in laser-induced breakdown spectroscopy analysis of silicate rocks[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2020, 166: 105804. doi: 10.1016/j.sab.2020.105804

    [20]

    Hussain A,Xun G,Asghar H,et al. Enhancement of laser-induced breakdown spectroscopy (LIBS) signal subject to the magnetic confinement and dual pulses[J]. Optics and Spectroscopy, 2021, 129(4): 452−459. doi: 10.1134/S0030400X21040068

    [21]

    Yang R Z,Bi L Q. Spectral enhancement mechanism and analysis of defocused collinear DP-LIBS technology[J]. Optik, 2021, 243: 167025. doi: 10.1016/j.ijleo.2021.167025

    [22]

    Lu C X,Wang B,Jiang X P,et al. Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science & Technology, 2019, 21(3): 034014.

    [23]

    Yan J J,Hao Z Q,Zhou R,et al. A quantitative analysis method assisted by image features in laser-induced breakdown spectroscopy[J]. Analytica Chimica Acta, 2019, 1082: 30−36. doi: 10.1016/j.aca.2019.07.058

    [24]

    Li Q Y,Tian Y,Xue B Y,et al. Improvement in the analytical performance of underwater LIBS signals by exploiting the plasma image information[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 366−376. doi: 10.1039/C9JA00367C

    [25]

    Porizka P,Demidov A,Kaiser J,et al. Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2014, 101: 155−163. doi: 10.1016/j.sab.2014.08.027

    [26]

    Sanchez-Esteva S,Knadel M,Labouriau R,et al. Total phosphorus determination in soils using laser-induced breakdown spectroscopy:Evaluating different sources of matrix effects[J]. Applied Spectroscopy, 2021, 75(1): 22−33. doi: 10.1177/0003702820949560

    [27]

    Kosareva N,Krylovas A,Zavadskas E K. Statistical analysis of MCDM data normalization methods using Monte Carlo approach. The case of ternary estimates matrix[J]. Economic Computation and Economic Cybernetics Studies and Research, 2018, 52(4): 159−175.

    [28]

    Jia Y,Zhao N J,Fang L,et al. Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science & Technology, 2018, 20(9): 095503.

    [29]

    Lu P,Zhuo Z,Zhang W H,et al. Determination of calorific value in coal by LIBS coupled with acoustic normalization[J]. Applied Physics B-Lasers and Optics, 2021, 127(6): 82. doi: 10.1007/s00340-021-07626-5

    [30]

    刘旭阳,张大成,冯中琦,等. 基于远程激光诱导击穿光谱技术的航空合金鉴别[J]. 光子学报, 2021, 50(10): 165−172.

    Liu X Y,Zhang D C,Feng Z Q,et al. Discrimination of aviation alloy by remote laser-induced breakdown spectroscopy technology[J]. Acta Photonica Sinica, 2021, 50(10): 165−172.

    [31]

    Zeng Q D,Chen G H,Li W X,et al. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science & Technology, 2022, 24(8): 084009.

    [32]

    Yi R X,Li J M,Yang X Y,et al. Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence[J]. Analytical Chemistry, 2017, 89(4): 2334−2337. doi: 10.1021/acs.analchem.6b03969

    [33]

    Liu X L,Rao Y M,Liu J G,et al. Quantitative analysis of gadolinium in thorium oxide matrix using laser-induced breakdown spectroscopy[J]. Applied Physics B-Lasers and Optics, 2022, 128(10): 192. doi: 10.1007/s00340-022-07914-8

    [34]

    Martin M,Brice D,Martin S,et al. Inorganic characterization of switchgrass biomass using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2021, 186: 106323. doi: 10.1016/j.sab.2021.106323

    [35]

    Li J J,Chen F,Huang G Q,et al. Identification of Graves’ ophthalmology by laser-induced breakdown spectroscopy combined with machine learning method[J]. Frontiers of Optoelectronics, 2021, 14(3): 321−328. doi: 10.1007/s12200-020-0978-2

    [36]

    Liu X N,Che X Q,Li K Y,et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes[J]. Plasma Science & Technology, 2020, 22(7): 074006.

    [37]

    侯佳佳,张雷,赵洋,等. 基于共振与非共振双线的自吸收免疫LIBS技术研究[J]. 光谱学与光谱分析, 2020, 40(1): 261−265.

    Hou J J,Zhang L,Zhao Y,et al. Investigation on resonance and non-resonance doublet based self-absorption-free LIBS technique[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 261−265.

    [38]

    Guo Y M,Guo L B,Li J M,et al. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data[J]. Frontiers of Physics, 2016, 11(5): 114212. doi: 10.1007/s11467-016-0604-3

  • 加载中

(3)

(3)

计量
  • 文章访问数:  922
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2022-12-19
修回日期:  2023-03-31
录用日期:  2023-05-16
刊出日期:  2023-08-31

目录