中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜

杨梦楠, 孙晗, 曹海龙, 贾增华, 冯政远, 郑丽君, 陈男. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563-575. doi: 10.15898/j.ykcs.202208230155
引用本文: 杨梦楠, 孙晗, 曹海龙, 贾增华, 冯政远, 郑丽君, 陈男. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563-575. doi: 10.15898/j.ykcs.202208230155
YANG Mengnan, SUN Han, CAO Hailong, JIA Zenghua, FENG Zhengyuan, ZHENG Lijun, CHEN Nan. Preparation and Application of Biochar-Chitosan Magnetic Composite Adsorbent for Removal of Lead and Copper from Groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563-575. doi: 10.15898/j.ykcs.202208230155
Citation: YANG Mengnan, SUN Han, CAO Hailong, JIA Zenghua, FENG Zhengyuan, ZHENG Lijun, CHEN Nan. Preparation and Application of Biochar-Chitosan Magnetic Composite Adsorbent for Removal of Lead and Copper from Groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563-575. doi: 10.15898/j.ykcs.202208230155

生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜

  • 基金项目: 企事业单位委托项目“长江流域典型金属矿山酸性土壤及地下水污染协同修复技术研发”(342021399)
详细信息
    作者简介: 杨梦楠,硕士研究生,主要从事生态环境系统修复研究工作。E-mail:yangyangwd@hotmail.com
    通讯作者: 陈男,教授,博士生导师,地下水科学与工程专业,主要从事地下水污染控制与修复技术研究。E-mail:chennan@cugb.edu.cn
  • 中图分类号: X523;G264.3

Preparation and Application of Biochar-Chitosan Magnetic Composite Adsorbent for Removal of Lead and Copper from Groundwater

More Information
  • 壳聚糖作为天然多糖有机物,具有对环境友好的特性,其含有的大量含氮官能团可吸附水中的金属离子。但壳聚糖类吸附剂在酸性条件下适应性差,实际使用过程中需要调节pH值,因此增加了运行成本。本文选用农林废弃物花生壳(CC)和玉米芯(PS)制备生物炭,与壳聚糖进行结合,并引入磁性因子Fe3O4,制备了花生壳生物炭-壳聚糖磁性复合吸附剂(PSC)和玉米芯生物炭-壳聚糖磁性复合吸附剂(CCC),并研究这两种吸附剂对水中Pb2+和Cu2+的吸附性能,同时利用实际含多种金属离子的地下水对所制备的材料进行实验,以评估其实际应用潜能。比表面积仪(BET)分析表征显示,CCC相比PSC的比表面积和平均孔径更大,两种吸附剂在pH 4~7范围内均表现出稳定的吸附性能。循环5个周期后,两种吸附剂仍对Pb2+和Cu2+的去除率保持在85%以上,表现出良好的循环利用性能。CCC对Pb2+和Cu2+的最大吸附容量分别为169.10mg/g和18.69mg/g,均大于PSC的最大吸附容量。同时,CCC可有效去除含重金属地下水中的多种金属离子。在处理实际含Pb2+和Cu2+的废水时可优先选择CCC材料作为吸附剂。吸附动力学实验结果表明,两种材料对Pb2+的吸附以物理吸附为主,对Cu2+的吸附以化学吸附为主。pH值影响实验和X射线光电子能谱(XPS)表征结果说明两种材料主要通过静电吸引和含氮官能团与金属离子的螯合作用去除Pb2+和Cu2+。本文使用农林废弃物制备生物炭降低了成本,引入的磁性因子方便了脱附过程,生物炭-壳聚糖磁性复合材料的制备方法有效地改善了壳聚糖类材料在酸性条件下的适应性,所制备的材料是一种去除地下水中Pb2+和Cu2+污染的有效潜在吸附剂。

  • 加载中
  • 图 1  生物炭-壳聚糖磁性复合材料合成示意图

    Figure 1. 

    图 2  (a)PS、(b)CC、(c)PSC和(d)CCC的SEM图像

    Figure 2. 

    图 3  (A)Fe3O4(a线)、壳聚糖(b线)、CCC(c线)、PSC(d线)的XRD谱图;(B)材料在不同pH条件下(4、7、10)的溶胀性

    Figure 3. 

    图 4  pH对PSC和CCC吸附Cu2+和Pb2+效果的影响

    Figure 4. 

    图 5  PSC和CCC对(a)Pb2+和(b)Cu2+的循环利用性

    Figure 5. 

    图 6  PSC(a)、吸附Pb2+后PSC(b)、吸附Cu2+后PSC(c)、CCC(d)、吸附Pb2+后CCC(e)、吸附Cu2+后CCC(f)的XPS谱图

    Figure 6. 

    表 1  PSC和CCC吸附Pb2+、Cu2+动力学模型拟合参数以及PSC和CCC吸附Pb2+、Cu2+等温线模型拟合参数

    Table 1.  Fitting parameters of kinetic models for Pb2+ and Cu2+ adsorption by PSC and CCC, and the fitting parameters of PSC and CCC adsorption of Pb2+ and Cu2+ isotherm models.

    金属离子制备
    材料
    伪一级动力学模型伪二级动力学模型
    K1R2χ2k2R2χ2
    Pb2+PSC0.03750.9980.0420.00620.9360.114
    CCC0.00450.9990.0440.00040.9860.121
    Cu2+PSC0.00720.9960.0490.00090.9970.135
    CCC0.00370.9880.0820.00210.9970.056
    金属离子制备
    材料
    Langmuir模型Freundlich模型
    qmKLR2χ2KF1/nR2χ2
    Pb2+PSC189.090.00170.9990.7020.7660.7490.9928.460
    CCC86.720.00360.9981.4201.2200.6220.9849.706
    Cu2+PSC18.690.01230.9810.9731.2770.4190.9522.372
    CCC14.340.01970.9790.6672.720.3680.9280.375
    下载: 导出CSV

    表 2  PSC和CCC吸附Pb和Cu的性能与其他材料对比

    Table 2.  Comparison of the adsorption capacities of PSC and CCC with other materials.

    吸附剂最大吸附容量(mg/g)参考文献
    PbCu
    二甘酸功能化磁性壳聚糖70.57-[36]
    EDTA-改性壳聚糖/SiO2/Fe3O4123.544.4[37]
    磁性花生壳28.3-[38]
    磁性壳聚糖/纤维素微球45.888.2[39]
    介孔CoFe2O4纳米颗粒32.1-[40]
    CCC169.1018.69本研究
    PSC86.7214.34本研究
    注:“-”表示文献中未提供数据。
    下载: 导出CSV
  • [1]

    Feng Z Y,Chen N,Liu T,et al. KHCO3 activated biochar supporting MgO for Pb(Ⅱ) and Cd(Ⅱ) adsorption from water:Experimental study and DFT calculation analysis[J]. Journal of Hazardous Materials, 2022, 426:128059. doi: 10.1016/j.jhazmat.2021.128059

    [2]

    Yang G X,Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research, 2014, 48:396−405. doi: 10.1016/j.watres.2013.09.050

    [3]

    Deng J Q,Liu Y G,Liu S B,et al. Competitive adsorption of Pb(Ⅱ),Cd(Ⅱ) and Cu(Ⅱ) onto chitosan-pyromellitic dianhydride modified biochar[J]. Journal of Colloid and Interface Science, 2017, 506:355−364. doi: 10.1016/j.jcis.2017.07.069

    [4]

    Jafarzadeh N,Heidari K,Meshkinian A,et al. Non-carcinogenic risk assessment of exposure to heavy metals in underground water resources in Saraven,Iran:Spatial distribution,monte-carlo simulation,sensitive analysis[J]. Environmental Research, 2022, 204:112002. doi: 10.1016/j.envres.2021.112002

    [5]

    Wang Q,Zhao Y,Zhai S,et al. Application of different redox mediators induced bio-promoters to accelerate the recovery of denitrification and denitrifying functional microorganisms inhibited by transient Cr(Ⅵ) shock[J]. Journal of Hazardous Materials, 2021, 420:126664. doi: 10.1016/j.jhazmat.2021.126664

    [6]

    Conceição F T,Silva M S G,Menegário A A,et al. Precipitation as the main mechanism for Cd(Ⅱ),Pb(Ⅱ) and Zn(Ⅱ) removal from aqueous solutions using natural and activated forms of red mud[J]. Environmental Advances, 2021, 4:100056. doi: 10.1016/j.envadv.2021.100056

    [7]

    Chen Y,Yang X. Molecular simulation of layered GO membranes with amorphous structure for heavy metal ions separation[J]. Journal of Membrane Science, 2022, 660:120863. doi: 10.1016/j.memsci.2022.120863

    [8]

    崔婷,叶欣,朱霞萍,等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试,2023,42(1):167−176.

    Cui T,Ye X,Zhu X P,et,al. Determination of various forms of iron and manganese oxides and the main controlling factors of absorption of Sb(Ⅲ) in soil[J]. Rock and Mineral Analysis, 2023, 42(1):167−176.

    [9]

    Jyoti D,Sinha R,Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies:A review[J]. Environmental Toxicology and Pharmacology, 2022, 94:103927. doi: 10.1016/j.etap.2022.103927

    [10]

    Chen Q,Luo Z,Hills C,et al. Precipitation of heavy metals from wastewater using simulated flue gas:Sequent additions of fly ash,lime and carbon dioxide[J]. Water Research, 2009, 43:2605−2614. doi: 10.1016/j.watres.2009.03.007

    [11]

    Luo J,Maier R M,Yu D,et al. Crittenden,double-network hydrogel:A potential practical adsorbent for critical metals extraction and recovery from water[J]. Environmental Science & Technology, 2022, 56:4715−4717.

    [12]

    Wu J W,Wang T,Wang J W,et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar:Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754:142150. doi: 10.1016/j.scitotenv.2020.142150

    [13]

    聂雪. 改性壳聚糖金属螯合物的合成及电催化性能研究[D]. 长沙: 中南大学, 2005.

    Nie X. Synthesis and electrocatalytic properties of modified chitosan metal chelates[D]. Changsha: Central South University, 2005.

    [14]

    Jiang B,Lin Y,Mbog J C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics[J]. Bioresource Technology, 2018, 270:603−611. doi: 10.1016/j.biortech.2018.08.022

    [15]

    Zhao C,Liu G,Sun N,et al. Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization[J]. Chemical Engineering Journal, 2018, 334:1270−1280. doi: 10.1016/j.cej.2017.11.069

    [16]

    Nazari S,Rahimi G,Khadem A. Effectiveness of native and citric acid-enriched biochar of chickpea straw in Cd and Pb sorption in an acidic soil[J]. Journal of Environmental Chemical Engineering, 2019, 7:103064. doi: 10.1016/j.jece.2019.103064

    [17]

    Wang F,Jin L,Guo C,et al. Enhanced heavy metals sorption by modified biochars derived from pig manure[J]. Science of the Total Environment, 2021, 786:147595. doi: 10.1016/j.scitotenv.2021.147595

    [18]

    Song J Y,Messele S A,Meng L J,et al. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based biochar/chitosan composite[J]. Water Research, 2021, 194:116930. doi: 10.1016/j.watres.2021.116930

    [19]

    Feng Z Y,Feng C P,Chen N,et al. Preparation of composite hydrogel with high mechanical strength and reusability for removal of Cu(Ⅱ) and Pb(Ⅱ) from water[J]. Separation and Purification Technology, 2022, 300:121894. doi: 10.1016/j.seppur.2022.121894

    [20]

    Chang Z,Tian L,Dong J,Chen Q,et al. The molecular markers provide complementary information for biochar characterization before and after HNO3/H2SO4 oxidation[J]. Chemosphere, 2022, 301:134422. doi: 10.1016/j.chemosphere.2022.134422

    [21]

    Du H,Xi C,Tang B,et al. Performance and mechanisms of NaOH and ball-milling co-modified biochar for enhanced the removal of Cd2+ in synthetic water:A combined experimental and DFT study[J]. Arabian Journal of Chemistry, 2022, 15:103817. doi: 10.1016/j.arabjc.2022.103817

    [22]

    Yin G,Tao L,Chen X,et al. Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions[J]. Journal of Hazardous Materials, 2021, 420:126487. doi: 10.1016/j.jhazmat.2021.126487

    [23]

    Gao N,Du W,Zhang M G,et al. Chitosan-modified biochar:Preparation,modifications,mechanisms and applications[J]. International Journal of Biological Macromolecules, 2022, 209:31−49. doi: 10.1016/j.ijbiomac.2022.04.006

    [24]

    Mallik A K,Kabir S F,Sakib M N,et al. Cu(Ⅱ) removal from wastewater using chitosan-based adsorbents:A review[J]. Journal of Environmental Chemical Engineering, 2022, 10:108048. doi: 10.1016/j.jece.2022.108048

    [25]

    Li Y,Zhou Y,Nie W,et al. Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles[J]. Journal of Porous Materials, 2015, 22:1383−1392. doi: 10.1007/s10934-015-0017-7

    [26]

    Javanbakht V,Ghoreishi S M,Habibi N,et al. A novel magnetic chitosan/clinoptilolite/magnetite nanocomposite for highly efficient removal of Pb(Ⅱ) ions from aqueous solution[J]. Powder Technology, 2016, 302:372−383. doi: 10.1016/j.powtec.2016.08.069

    [27]

    Charpentier T V J,Neville A,Lanigan J L,et al. Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions[J]. ACS Omega, 2016, 1:77−83. doi: 10.1021/acsomega.6b00035

    [28]

    李满林. 氨基硫脲及氨基化壳聚糖衍生物的合成与应用研究[D]. 杨凌: 西北农林科技大学, 2014.

    Li M L. Synthesis and application of thiourea and chitosan derivatives[D]. Yangling: Northwest A&F University, 2014.

    [29]

    Xiang J,Lin Q,Cheng S,et al. Enhanced adsorption of Cd(Ⅱ) from aqueous solution by a magnesium oxide-rice husk biochar composite[J]. Environmental Science and Pollution Research, 2018, 25:14032−14042. doi: 10.1007/s11356-018-1594-1

    [30]

    Zhou Y,Gao B,Fang J,et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231:512−518. doi: 10.1016/j.cej.2013.07.036

    [31]

    Xiang J,Lin Q,Yao X,et al. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil[J]. Environmental Research, 2021, 195:110650. doi: 10.1016/j.envres.2020.110650

    [32]

    Xu L,Liu Y,Wang J,et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite:Kinetic,thermal dynamic and DFT studies[J]. Journal of Hazardous Materials, 2021, 404:124140. doi: 10.1016/j.jhazmat.2020.124140

    [33]

    赵子科,陈春亮,柯盛,等. 榴莲壳和不同炭材料对低汞溶液的吸附动力学[J]. 岩矿测试,2022,41(1):90−98. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201009

    Zhao Z K,Chen C L,Ke S,et al. Adsorption kinetics of durian shell and different carbon materials to low mercury solution[J]. Rock and Mineral Analysis, 2022, 41(1):90−98. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201009

    [34]

    许芳,张利平,程先忠,等. 改性桑树叶吸附材料对废水中Cd(Ⅱ)的吸附性能研究[J]. 岩矿测试,2016,35(1):62−68.

    Xu F,Zhang L P,Cheng X Z,et al. Study on the adsorption performance of modified mulberry leaf adsorbent for Cd(Ⅱ) in wastewater[J]. Rock and Mineral Analysis, 2016, 35(1):62−68.

    [35]

    Karthik R,Meenakshi S. Removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution using polyaniline grafted chitosan[J]. Chemical Engineering Journal, 2015, 263:168−177. doi: 10.1016/j.cej.2014.11.015

    [36]

    Bai R X,Zhang Y,Zhao Z G,et al. Rapid and highly selective removal of lead in simulated wastewater of rare-earth industry using diglycolamic-acid functionalized magnetic chitosan adsorbents[J]. Journal of Industrial and Engineering Chemistry, 2018, 59(25):416−424.

    [37]

    Ren Y,He F,Peng H,et al. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent:Preparation,characterization,and application in heavy metal adsorption[J]. Chemical Engineering Journal, 2013, 226(12):300−311.

    [38]

    Rozumová L,Zivotský O,Seidlerová J,et al. Magnetically modified peanut husks as an effective sorbent of heavy metals[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):549−555. doi: 10.1016/j.jece.2015.10.039

    [39]

    Luo X,Zeng J,Liu S,et al. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system:Magnetic chitosan/cellulose microspheres[J]. Bioresource Technology, 2015, 194:403−406. doi: 10.1016/j.biortech.2015.07.044

    [40]

    Culita D C,Simonescu C M,Dragne M,et al. Effect of surfactant concentration on textural,morphological and magnetic properties of CoFe2O4 nanoparticles and evaluation of their adsorptive capacity for Pb(Ⅱ) ions[J]. Ceramics International, 2015, 41(10):13553−13560. doi: 10.1016/j.ceramint.2015.07.150

    [41]

    Ifthikar J,Jiao X,Ngambia A,et al. Facile one-pot synthesis of sustainable carboxymethyl chitosan-sewage sludge biochar for effective heavy metal chelation and regeneration[J]. Bioresource Technology, 2018, 262:22−31. doi: 10.1016/j.biortech.2018.04.053

    [42]

    Afzal M Z,Sun X F,Liu J,et al. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads[J]. Science of the Total Environment, 2018, 639:560−569. doi: 10.1016/j.scitotenv.2018.05.129

    [43]

    Zhou Y M,Fu S Y,Zhang L L,et al. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(Ⅱ)[J]. Carbohydrate Polymers, 2014, 101:75−82. doi: 10.1016/j.carbpol.2013.08.055

    [44]

    肖雪婷. Fe3O4-壳聚糖@生物炭的制备及处理油田采出水试验研究[D]. 沈阳: 沈阳建筑大学, 2020.

    Xiao X T. Study on preparation of Fe3O4-chitosan@biochar and treatment of oilfield produced water[D]. Shenyang: Shenyang Jianzhu University, 2020.

    [45]

    Tan Y,Wan X,Ni X,et al. Efficient removal of Cd(Ⅱ) from aqueous solution by chitosan modified kiwi branch biochar[J]. Chemosphere, 2022, 289:133251. doi: 10.1016/j.chemosphere.2021.133251

  • 加载中

(6)

(2)

计量
  • 文章访问数:  1454
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2022-08-23
修回日期:  2022-11-20
录用日期:  2023-01-18
刊出日期:  2023-06-30

目录