-
摘要:
提升致密背景下相对优质储层预测的能力,是当今油气勘探开发理论亟待破解的瓶颈和难题。致密油气储层的非均质性强,黏土矿物含量高且是吸附油接触最多的矿物之一。有机酸对黏土矿物的溶蚀影响,是实现致密油高效开采的关键。本文选择鄂尔多斯盆地三叠系延长组为研究对象,通过有机酸与砂岩的溶蚀模拟实验,对实验产物进行pH值、阳离子检测、孔隙度和渗透率测试以及扫描电镜观察。探讨了时间、温度和不同有机酸类型对黏土矿物的溶蚀影响。实验结果显示:①随时间的增长(1~9d),孔隙度增幅呈先增长后降低的趋势,渗透率的增幅呈持续增长趋势;温度升高(80~95℃)对有机酸溶蚀致密砂岩中的黏土矿物具有促进作用;②不同类型的有机酸对黏土矿物具有选择性溶蚀作用。酒石酸溶蚀大量黏土矿物、碎屑长石以及少量方解石胶结物;乙酸则相反,主要溶蚀方解石;甲酸、乙酸和丙酸配比的合酸以及甲酸、乙酸、丙酸和酒石酸配比的合酸溶液,均优先溶蚀绿泥石化、泥化的长石和方解石,直至方解石完全溶解;③不同类型的有机酸对储层物性的改造能力不同,甲酸对孔隙度的改善不明显,乙酸和丙酸对孔隙度改善明显,合酸对孔隙度的影响是单一酸改善的综合反映。综合分析,有机酸流体与致密砂岩的溶蚀反应机理主要为两种:①有机酸流体提供氢离子,溶蚀致密砂岩中的易溶矿物;②有机酸直接与致密砂岩矿物发生络合反应,影响络合物稳定性的因素主要是有机酸种类和pH值。乙酸、甲酸、丙酸和酒石酸等不同类型的有机酸对致密砂岩中黏土矿物的选择性溶蚀,对储层物性影响程度不一致。
Abstract:BACKGROUND Improving the prediction ability of relatively high-quality reservoirs under tight backgrounds is a bottleneck and a challenge in current oil and gas exploration and development theories. For tight reservoirs, exploring the dissolution mechanism of organic acid fluids on the reservoir is particularly important. Previous researchers have conducted a large number of water rock reaction simulation experiments on the dissolution of organic acids leading to the formation of secondary pores. It is proposed that the dissolution effect of acidic fluids is the main factor for increasing porosity in tight reservoirs, and it is also a key way to find “sweet spots” in tight reservoirs[3]. Based on previous research on dissolution pores in sandstone, scholars have focused on studying the chemical mechanism of organic acids in the dissolution of carbonate and feldspar minerals. Some studies have shown that the dissolution of calcite requires a lower pH[19] and the acidity of binary acid is very strong, which can greatly improve the solubility of aluminosilicate minerals[20-22]. However, the heterogeneity of tight sandstone reservoirs is strong, and its complex mineral components and pore structure characteristics differ greatly; it has a higher content of clay minerals, and during the diagenesis process, clay minerals often precipitate on the rigid particle surface of the pore inner wall as authigenic minerals. The main mineral in contact with crude oil is of clay composition in dense sandstone reservoirs[23-25]. Chlorite, kaolinite, illite and other minerals are common and important clay mineral types. As important factors affecting reservoir exploration and development, their organic acid dissolution effects on clay minerals need to be further studied.
OBJECTIVES (1) In order to explore the main influencing factors of organic acids on the dissolution of clay minerals in tight sandstone, by analyzing the influence of time, temperature and different types of organic acids on the dissolution of clay minerals. (2) To reveal the dissolution reaction mechanism between organic acid fluids and tight sandstone, providing a theoretical basis for improving the prediction ability of relatively high-quality reservoirs under tight backgrounds.
METHODS (1) The Triassic Yanchang Formation in the Ordos Basin was selected as the research object, and the ratio of reaction fluid to sandstone dissolution simulation experiment was conducted according to the type and content of organic acid in the thermal evolution fluid of Source rock. (2) After the reaction, the column rock sample was rinsed multiple times with distilled water, placed in a drying oven, dried for 24h, and then taken out for testing. The porosity and permeability of the column rock sample after the reaction were tested on the PoroPDP-200 overlying pressure pore permeability meter before and after the experiment, and the intensity of dissolution was quantitatively calibrated. (3) Small samples of 5-8cm for argon ion polishing were selected, and observed under the Quanta450FEG field emission environment scanning electron microscope (Lanzhou Oil and Gas Resources Research Center, Chinese Academy of Sciences). Then, through thin section identification and scanning electron microscope observation of the petrology characteristics of the samples, the cement and pore characteristics of the samples before and after the experiment were compared. (4) Using Optima 8000 inductively coupled plasma-optical emission spectrometer (PerkinElmer Company, USA) to detect cations, the practical range of the measured standard curve was 0.1-20mg/L, and samples that were not within the test range were diluted. The standard curve solution contains a total of 8 ions: K, Ca, Na, Mg, Al, Si, P and Mn.
RESULTS (1) With the increase of time (1-9 days), the increase of porosity dissolution increases first and then decreases, reaching its peak at 6 days; the increase of penetration rate shows a continuous growth trend. The increase in temperature can also promote the dissolution of sandstone by organic acids (Fig.3, Fig.4). (2) Different types of organic acids have selective dissolution of clay minerals. Tartaric acid mainly dissolves clay minerals, detrital feldspar and a small amount of calcite cement; on the contrary, acetic acid mainly dissolves calcite. The sequence of propionic acid dissolution is from calcite to feldspar detrital particles, from dissolution cement matrix to argillized feldspar; the mixed acid solution of formic acid, acetic acid and propionic acid and mixed acid solution of formic acid, acetic acid, propionic acid and tartaric acid preferentially dissolve chlorinated and argillized feldspar and calcite until calcite is completely dissolved (Fig.4, Fig.5). (3) The improvement of pores by formic acid is not significant among different types of organic acids. Propionic acid greatly improves porosity. The influence of combined acids on porosity is a comprehensive reflection of the influence of single acids (Fig.6).
CONCLUSIONS Formic acid has little effect on porosity, whereas acetic acid and propionic acid have obvious effect on porosity. The combined effects of formic acid, acetic acid, propionic acid, and tartaric acid on porosity and permeability are a comprehensive reflection of the improvement of a single acid. The selective dissolution of clay minerals in tight sandstone by different types of organic acids has different effects on the physical properties of the reservoir, providing a scientific basis for improving the prediction ability of relatively high-quality reservoirs under tight background.
-
Key words:
- clay minerals /
- dense sandstone /
- organic acid /
- corrosion simulation experiment
-
表 1 主要有机酸类型占总有机酸的比例
Table 1. Data comparison of major organic acids.
样品 流体压力
(MPa)实验温度
(℃)主要有机酸类型占总有机酸的比例 实验系统 乙酸(%) 丙酸(%) 甲酸(%) 柠檬酸(%) 酒石酸(%) 富马酸(%) 1 16.9 250 84.81 9.92 1.55 0.00 0.00 0.00 封闭[27] 2 22.1 300 54.09 9.43 1.14 2.32 29.56 0.39 3 32.5 350 45.09 7.54 1.16 4.30 38.89 0.15 4 37.7 370 32.77 5.15 0.68 0.83 57.51 0.00 5 42.9 400 87.09 10.29 0 0.00 0.00 0.00 6 52.2 450 34.12 2.71 0.90 60.47 0.00 0.00 1 15 150 1.04 0 0 0.00 97.67 0.00 半封闭[28] 2 20 200 1.31 0 0 0.72 96.26 1.13 3 25 250 4.11 0 0 1.44 86.63 1.38 4 30 300 4.91 2.96 0.46 4.13 72.00 11.06 表 2 样品实验条件及实验后的pH值、孔隙度和总面孔率统计数据
Table 2. Sample experimental conditions and statistical data of pH value, porosity, and total porosity after the experiment.
实验样品编号 岩性 溶液配比 温度点(℃) 恒温时间(d) 实验后pH值 实验后孔隙度(%) 总面孔率(%) C7-1-1 砂岩 甲乙丙酒 96 3d 3.74 8.034 2 C7-1-2 砂岩 甲乙丙酒 96 6d 4.26 8.575 5 C7-1-3 砂岩 甲乙丙酒 96 9d 4.21 8.509 5 C6-1-1 砂岩 甲乙丙酒 96 3d 3.51 11.745 15 C6-1-2 砂岩 甲乙丙酒 96 6d 3.97 13.343 16 C6-1-3 砂岩 甲乙丙酒 96 9d 3.7 12.805 10 注:甲乙丙酒为甲酸、乙酸、丙酸、酒石酸的体 积比为 1∶47∶7.4∶84。 表 3 不同时间的溶蚀实验前后样品的pH值、总面孔率和物性变化
Table 3. Changes in pH value, total porosity, and physical properties of samples before and after experiments at different time.
实验样品编号 实验时间 实验后pH 原孔隙度(%) 实验后孔隙度(%) 原渗透率(md) 实验后渗透率(md) 总面孔率(%) C6-2-1 1d 3.01 8.233 8.465 0.0138 0.0141 5 C6-2-2 2d 3.4 7.296 7.487 0.0101 0.0181 7 C6-2-3 3d 3.52 7.488 7.756 0.0111 0.0266 9 C6-2-4 4d 3.52 7.905 8.42 0.0101 0.0268 5 C6-2-5 5d 3.67 6.974 7.361 0.0103 0.0283 10 C6-2-6 6d 3.72 8.032 8.43 0.0125 0.0396 14 C6-2-7 7d 3.8 7.407 7.741 0.0119 0.0384 13 表 4 不同类型有机酸溶蚀实验后样品的pH值、孔隙度和总面孔率统计数据
Table 4. Statistical data on pH value, porosity, and total porosity of samples in different types of organic acid dissolution experiments.
实验样品编号 实验条件 原始pH值 实验后的pH值 实验后孔隙度(%) 总面孔率(%) C6-1-0 去离子水,25℃,9d - - 9.794 6 C6-1-5 酒石酸,95℃,9d 2.5 3.26 10.448 6 C6-1-6 乙酸,95℃,9d 2.5 3.6 10.29 20 C6-1-7 甲乙丙酸a,95℃,9d 2.5 3.81 12.0623 20 C6-1-8 甲乙丙酒酸b,95℃,9d 2.5 3.7 12.8085 10 注:a为甲酸、乙酸、丙酸的体积比为1∶47∶7.4; b为甲酸、乙酸、丙酸、酒石酸的体积比为1∶47∶7.4∶84。下同。 表 5 不同类型有机酸溶蚀实验前后样品的pH值、总面孔率和物性变化
Table 5. Changes in pH value, total porosity, and physical properties of samples before and after different types of organic acid dissolution experiments.
实验样品编号 溶液配比 实验前pH值 实验后pH值 原始孔隙度(%) 实验后孔隙度(%) 原始渗透率(md) 实验后渗透率(md) 总面孔率(%) C6-2-0 去离子水 - 7.94 7.401 7.472 0.0141 0.0184 5 C6-2-8 酒石酸 2.5 3.47 7.348 7.541 0.0133 0.0261 8 C6-2-9 乙酸 2.5 3.58 7.425 7.921 0.013 0.0372 8 C6-2-10 甲酸 2.5 3.55 7.872 8.363 0.0126 0.0285 6 C6-2-11 丙酸 2.5 3.65 7.764 8.751 0.0131 0.0301 10 C6-2-12 甲乙丙酸 2.5 3.67 8.252 9.164 0.0122 0.0311 8 C6-2-13 甲乙丙酒酸 2.5 3.72 8.032 8.43 0.0125 0.0396 14 -
[1] 王艳忠,操应长,葸克来,等. 碎屑岩储层地质历史时期孔隙度演化恢复方法——以济阳坳陷东营凹陷沙河街组四段上亚段为例[J]. 石油学报,2013,34(6):12.
Wang Y Z,Cao Y C,Xian K L,et al. The method of porosity evolution and restoration in clastic rock reservoir during geological history—Taking the upper sub member of the fourth member of Shahejie Formation in Dongying Depression of Jiyang Depression as an example[J]. Journal of Petroleum, 2013, 34(6):12.
[2] Guo Q L,Wang S J,Chen X M. Assessment on tight oil resources in major basins in China[J]. Journal of Asian Earth Sciences, 2019, 178:52−63.
[3] 钟大康,朱筱敏,周新源,等. 次生孔隙形成期次与溶蚀机理——以塔中地区志留系沥青砂岩为例[J]. 天然气工业,2006,26(9):21−24.
Zhong D K,Zhu X M,Zhou X Y,et al. Formation stages and dissolution mechanism of secondary pores:Taking Silurian bituminous sandstone in Tazhong area as an example[J]. Natural Gas Industry, 2006, 26(9):21−24.
[4] Ronald S, Laura J, Crossey E, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin 1989, 73(1): 1–23.
[5] Meshri I D. On the reactivity of carbonic and organic acids and generation of secondary porosity[J]. SEPM, 1986, 38:123−128.
[6] Paul D,Robert E,Sweeney G,et al. Soil gas methane at petroleum contaminated sites:Forensic determination of origin and source[J]. Environmental Forensics, 2000, 1(1):3−10. doi: 10.1006/enfo.1998.0002
[7] 杨俊杰,黄思静. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发,1995,22(4):10.
Yang J J,Huang S J. Experimental simulation of dissolution of feldspar sandstone by acetic acid[J]. Petroleum Exploration and Development, 1995, 22(4):10.
[8] Macgowan D B,Fisher K J,Surdam R C. Alumino-silicate dissolution in the subsurface:Experimental simulation of a specific geologic environment[J]. AAPG Bulletin, 1986, 70:10−48.
[9] 于川淇,宋晓蛟,李景景,等. 长石溶蚀作用对储层物性的影响——以渤海湾盆地东营凹陷为例[J]. 石油与天然气地质,2013,34(6):765−770.
Yu C Q,Song X J,Li J J,et al. The influence of feldspar dissolution on reservoir physical properties—Taking Dongying Depression in Bohai Bay Basin as an example[J]. Petroleum and Natural Gas Geology, 2013, 34(6):765−770.
[10] 罗静兰,Ketzer J M,李文厚,等. 延长油田侏罗系—上三叠统层序地层与生储盖组合[J]. 石油与天然气地质,2001,22(4):337−401. doi: 10.3321/j.issn:0253-9985.2001.04.011
Luo J L,Ketzer J M,Li W H,et al. Jurassic upper Triassic sequence stratigraphy and source reservoir cap rock assemblage of Yanchang oilfield[J]. Oil and Gas Geology, 2001, 22(4):337−401. doi: 10.3321/j.issn:0253-9985.2001.04.011
[11] 罗静兰,罗晓容,白玉彬,等. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响[J]. 地球科学与环境学报,2016,38(1):79−92.
Luo J L,Luo X R,Bai Y B,et al. Influence of differential diagenetic evolution process on reservoir densification timing and pore evolution[J]. Journal of Earth Science and Environment, 2016, 38(1):79−92.
[12] 季汉成,徐珍. 深部碎屑岩储层溶蚀作用实验模拟研究[J]. 地质学报,2007,2(2):212−219. doi: 10.3321/j.issn:0001-5717.2007.02.010
Ji H C,Xu Z. Experimental simulation study on dissolution of deep clastic rock reservoir[J]. Acta Geologica Sinica, 2007, 2(2):212−219. doi: 10.3321/j.issn:0001-5717.2007.02.010
[13] 向廷生,蔡春芳,付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报,2004(4):597−602. doi: 10.3969/j.issn.1000-0550.2004.04.007
Xiang T S,Cai C F,Fu H E. Simulation experiment of feldspar dissolution in carboxylic acid solution at different temperatures[J]. Acta Sedimentologica Sinica, 2004(4):597−602. doi: 10.3969/j.issn.1000-0550.2004.04.007
[14] 范明,黄继文,陈正辅. 塔里木盆地库车坳陷烃源岩热模拟实验及油气源对比[J]. 石油实验地质,2009,31(5):518−521. doi: 10.11781/sysydz200905518
Fan M,Huang J W,Chen Z F. Thermal simulation experiment of hydrocarbon source rocks and correlation of oil and gas sources in Kuqa Depression,Tarim Basin[J]. Petroleum Geology & Experiment, 2009, 31(5):518−521. doi: 10.11781/sysydz200905518
[15] 曹平,宁果果,范祥,等. 不同温度的水岩作用对岩石节理表面形貌特征的影响[J]. 中南大学学报(自然科学版),2013,44(4):1510−1516.
Cao P,Ning G G,Fan X,et al. The influence of water rock interaction at different temperatures on the surface morphology of rock joints[J]. Journal of Central South University (Natural Science Edition), 2013, 44(4):1510−1516.
[16] 刘锐娥,吴浩,魏新善,等. 酸溶蚀模拟实验与致密砂岩次生孔隙成因机理探讨:以鄂尔多斯盆地盒8段为例[J]. 高校地质学报,2015,21(4):758−766.
Liu R E,Wu H,Wei X S,et al. Acid dissolution simulation experiment and discussion on the formation mechanism of secondary pores in tight sandstone:Taking the 8 Member of Ordos Basin as an example[J]. Journal of University Geology, 2015, 21(4):758−766.
[17] 王琪,许勇,李树同,等. 鄂尔多斯盆地姬塬地区长8致密储层溶蚀作用模拟及其影响因素[J]. 地球科学与环境学报,2017,39(2):225−237.
Wang Q,Xu Y,Li S T,et al. Corrosion simulation of Chang 8 tight reservoir in Jiyuan area of Ordos Basin and its influencing factors[J]. Journal of Earth Science and Environment, 2017, 39(2):225−237.
[18] 吴泓辰,张晓丽,何金先,等. 致密砂岩长石溶蚀机制及其影响因素[J]. 石油化工高等学校学报,2017,30(5):42−49.
Wu H C,Zhang X L,He J X,et al. The dissolution mechanism of feldspar in tight sandstone and its influencing factors[J]. Journal of Petrochemical University, 2017, 30(5):42−49.
[19] Yuan G H,Cao Y C. Coupled mineral alteration and oil degradation in thermal oil-water-feldspar systems and implications for organic-inorganic interactions in hydrocarbon reservoirs[J]. Geochimica et Cosmochimica Acta, 2019, 248:61−87. doi: 10.1016/j.gca.2019.01.001
[20] Crundwel F K. The mechanism of dissolution of the feldspars:Part Ⅰ. Dissolution at conditions far from equilibrium[J]. Hydrometallurgy, 2015, 151:151−162. doi: 10.1016/j.hydromet.2014.10.006
[21] Crundwel F K. The mechanism of dissolution of minerals in acidic and alkaline solutions:Part Ⅴ. Surface charge and zeta potential[J]. Hydrometallurgy, 2016, 161:174−184. doi: 10.1016/j.hydromet.2016.01.031
[22] 孙小龙,张宪国,林承焰,等. 基于核磁共振标定的高压压汞孔喉分布定量评价方法[J]. 岩矿测试,2017,36(6):601−607.
Sun X L,Zhang X G,Lin C Y,et al. Quantitative evaluation method for high-pressure mercury injection pore throat distribution based on nuclear magnetic resonance calibration[J]. Rock and Mineral Analysis, 2017, 36(6):601−607.
[23] 葛云锦,任来义,贺永红,等. 鄂尔多斯盆地富县—甘泉地区三叠系延长组7油层组密油富集主控因素[J]. 石油与天然气地质,2018,39(6):1190−1200. doi: 10.11743/ogg20180609
Ge Y J,Ren L Y,He Y H,et al. Main controlling factors of dense oil enrichment in Triassic Yanchang Formation 7 oil-bearing formation in Fuxian Ganquan area of Ordos Basin[J]. Petroleum and Natural Gas Geology, 2018, 39(6):1190−1200. doi: 10.11743/ogg20180609
[24] 曾溅辉,朱志强,吴琼. 烃源岩的有机酸生成及其影响因素的模拟实验研究[J]. 沉积学报,2007,25(6):847−851.
Zeng Z H, Zhu Z Q, Wu Q, et al. Simulation experiment study on organic acid generation in Source rock and its influencing factors[J]. Journal of Sedimentation, 2007, 25(6):847−851.
[25] 曾溅辉,杨智峰,冯枭,等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展,2014,29(6):651−661.
Zeng J H,Yang Z F,Feng X,et al. Research status and key scientific issues of tight reservoir oil and gas accumulation mechanism[J]. Progress in Earth Science, 2014, 29(6):651−661.
[26] 朱晴,乔向阳,张磊. 高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用[J]. 岩矿测试,2020,39(3):373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138
Zhu Q,Qiao X Y,Zhang L. Application of high-pressure mercury injection in characterizing pore throat distribution and early productivity evaluation of tight gas reservoirs[J]. Rock and Mineral Analysis, 2020, 39(3):373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138
[27] Yang F,Xue L H,Yang S,et al. Characteristics of organic acids in lacustrine organic-rich shale,Ordos Basin,China[J]. Petroleum Science and Technology, 2019, 37:876−881. doi: 10.1080/10916466.2018.1539753
[28] 栾国强,董春梅,马存飞,等. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征[J]. 沉积学报,2016,34(6):1208−1216.
Luan G Q,Dong C M,Ma C F,et al. Diagenesis and evolution characteristics of organic rich shale based on thermal simulation experiment[J]. Journal of Sedimentology, 2016, 34(6):1208−1216.
[29] 黄思静,梁瑞,黄可可,等. 鄂尔多斯盆地上古生界碎屑岩储层中的鞍形白云石胶结物及其对储层的影响[J]. 成都理工大学学报(自然科学版),2010,37(4):366−376.
Huang S J,Liang R,Huang K K,et al. Saddle dolomite cement in upper Paleozoic clastic rock reservoirs in Ordos Basin and its impact on reservoirs[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2010, 37(4):366−376.
[30] 汪洋,李树同,牟炜卫,等. 姬塬西部地区长8-1致密储层特征及孔隙度演化分析[J]. 岩性油气藏,2016,28(4):59−66. doi: 10.3969/j.issn.1673-8926.2016.04.008
Wang Y,Li S T,Mou W W,et al. Chang 8,Western Jiyuan 8-1. Analysis of tight reservoir characteristics and porosity evolution[J]. Lithologic Reservoirs, 2016, 28(4):59−66. doi: 10.3969/j.issn.1673-8926.2016.04.008
[31] 杨磊磊. 酸性流体参与的成岩过程中水岩化学作用及对砂岩储层孔隙度的影响[D]. 长春: 吉林大学, 2015.
Yang L L. Chemical action of water and rock during diagenesis with acid fluid participation and its impact on sandstone reservoir porosity[D]. Changchun: Jilin University, 2015.
[32] Huang S J,Huang K K,Feng W L,et al. Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis—A case study on the upper Paleozoic,Ordos Basin and Xujiahe Formation,western Sichuan Depression[J]. Geochimica, 2009, 38:498−506.
[33] Welch S A,Ullman W J. Feldspar dissolution in acidic and organic solutions:Compositional and pH dependence of dissolution rate[J]. Geochimica et Cosmochimica Acta, 1996(16):2939−2948.