中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

有机酸对致密砂岩中黏土矿物的选择性溶蚀研究

杨飞, 申志超, 杜江民, 王芳, 董博. 有机酸对致密砂岩中黏土矿物的选择性溶蚀研究[J]. 岩矿测试, 2023, 42(3): 478-490. doi: 10.15898/j.ykcs.202211210222
引用本文: 杨飞, 申志超, 杜江民, 王芳, 董博. 有机酸对致密砂岩中黏土矿物的选择性溶蚀研究[J]. 岩矿测试, 2023, 42(3): 478-490. doi: 10.15898/j.ykcs.202211210222
YANG Fei, SHEN Zhichao, DU Jiangmin, WANG Fang, DONG Bo. Selective Dissolution of Clay Minerals in Tight Sandstone by Organic Acids[J]. Rock and Mineral Analysis, 2023, 42(3): 478-490. doi: 10.15898/j.ykcs.202211210222
Citation: YANG Fei, SHEN Zhichao, DU Jiangmin, WANG Fang, DONG Bo. Selective Dissolution of Clay Minerals in Tight Sandstone by Organic Acids[J]. Rock and Mineral Analysis, 2023, 42(3): 478-490. doi: 10.15898/j.ykcs.202211210222

有机酸对致密砂岩中黏土矿物的选择性溶蚀研究

  • 基金项目: 河北省高等学校科学技术研究项目(ZD2022057);河北省高等学校研究项目(QN2022064);河北地质大学青年科技基金项目(QN202233);河北地质大学教学改革研究与实践项目(2021J57)
详细信息
    作者简介: 杨飞,博士,讲师,从事非常规油气储层研究。E-mail:yfyaolan@sina.com
    通讯作者: 申志超,博士,讲师,从事岩石成因、矿床成因(斑岩铜矿)研究。E-mail:shenzhichao1042@163.com
  • 中图分类号: P589.1

Selective Dissolution of Clay Minerals in Tight Sandstone by Organic Acids

More Information
  • 提升致密背景下相对优质储层预测的能力,是当今油气勘探开发理论亟待破解的瓶颈和难题。致密油气储层的非均质性强,黏土矿物含量高且是吸附油接触最多的矿物之一。有机酸对黏土矿物的溶蚀影响,是实现致密油高效开采的关键。本文选择鄂尔多斯盆地三叠系延长组为研究对象,通过有机酸与砂岩的溶蚀模拟实验,对实验产物进行pH值、阳离子检测、孔隙度和渗透率测试以及扫描电镜观察。探讨了时间、温度和不同有机酸类型对黏土矿物的溶蚀影响。实验结果显示:①随时间的增长(1~9d),孔隙度增幅呈先增长后降低的趋势,渗透率的增幅呈持续增长趋势;温度升高(80~95℃)对有机酸溶蚀致密砂岩中的黏土矿物具有促进作用;②不同类型的有机酸对黏土矿物具有选择性溶蚀作用。酒石酸溶蚀大量黏土矿物、碎屑长石以及少量方解石胶结物;乙酸则相反,主要溶蚀方解石;甲酸、乙酸和丙酸配比的合酸以及甲酸、乙酸、丙酸和酒石酸配比的合酸溶液,均优先溶蚀绿泥石化、泥化的长石和方解石,直至方解石完全溶解;③不同类型的有机酸对储层物性的改造能力不同,甲酸对孔隙度的改善不明显,乙酸和丙酸对孔隙度改善明显,合酸对孔隙度的影响是单一酸改善的综合反映。综合分析,有机酸流体与致密砂岩的溶蚀反应机理主要为两种:①有机酸流体提供氢离子,溶蚀致密砂岩中的易溶矿物;②有机酸直接与致密砂岩矿物发生络合反应,影响络合物稳定性的因素主要是有机酸种类和pH值。乙酸、甲酸、丙酸和酒石酸等不同类型的有机酸对致密砂岩中黏土矿物的选择性溶蚀,对储层物性影响程度不一致。

  • 加载中
  • 图 1  鄂尔多斯盆地构造单元划分及采样位置图

    Figure 1. 

    图 2  延长组7段砂岩XRF数据分析

    Figure 2. 

    图 3  时间与有机酸溶蚀砂岩孔隙度(a)和渗透率(b)的关系

    Figure 3. 

    图 4  不同的有机酸类型对储层(a)孔隙度和(b)渗透率的影响

    Figure 4. 

    图 5  两组实验不同有机酸类型溶蚀砂岩析出金属离子含量分析(a和c是两组实验的所有金属离子含量分析。由于Ca离子析出量过多,b和d是对应剔除Ca离子的其他离子含量分析)

    Figure 5. 

    图 6  酒石酸溶蚀过后,仍存在很多方解石(a、b),溶出的多为绿泥石组分(c);形成孔喉;钠长石溶蚀现象明显(d)。乙酸溶蚀过后,长石溶蚀现象明显(e、f、g、h);溶蚀后形成粒间孔(g)。合酸溶蚀后局部可见少量未溶方解石(i);见钾长石表面的黏土矿物溶蚀(j);长石溶蚀附近可见新生矿物颗粒附着(k、l)

    Figure 6. 

    图 7  时间与有机酸溶蚀砂岩析出Mg (a)、Fe (b)、Al (c)、Si (d)、K (e)和Na (f)离子的浓度

    Figure 7. 

    表 1  主要有机酸类型占总有机酸的比例

    Table 1.  Data comparison of major organic acids.

    样品流体压力
    (MPa)
    实验温度
    (℃)
    主要有机酸类型占总有机酸的比例实验系统
    乙酸(%)丙酸(%)甲酸(%)柠檬酸(%)酒石酸(%)富马酸(%)
    1 16.9 250 84.81 9.92 1.55 0.00 0.00 0.00 封闭[27]
    2 22.1 300 54.09 9.43 1.14 2.32 29.56 0.39
    3 32.5 350 45.09 7.54 1.16 4.30 38.89 0.15
    4 37.7 370 32.77 5.15 0.68 0.83 57.51 0.00
    5 42.9 400 87.09 10.29 0 0.00 0.00 0.00
    6 52.2 450 34.12 2.71 0.90 60.47 0.00 0.00
    1 15 150 1.04 0 0 0.00 97.67 0.00 半封闭[28]
    2 20 200 1.31 0 0 0.72 96.26 1.13
    3 25 250 4.11 0 0 1.44 86.63 1.38
    4 30 300 4.91 2.96 0.46 4.13 72.00 11.06
    下载: 导出CSV

    表 2  样品实验条件及实验后的pH值、孔隙度和总面孔率统计数据

    Table 2.  Sample experimental conditions and statistical data of pH value, porosity, and total porosity after the experiment.

    实验样品编号岩性溶液配比温度点(℃)恒温时间(d)实验后pH值实验后孔隙度(%)总面孔率(%)
    C7-1-1砂岩甲乙丙酒963d3.748.0342
    C7-1-2砂岩甲乙丙酒966d4.268.5755
    C7-1-3砂岩甲乙丙酒969d4.218.5095
    C6-1-1砂岩甲乙丙酒963d3.5111.74515
    C6-1-2砂岩甲乙丙酒966d3.9713.34316
    C6-1-3砂岩甲乙丙酒969d3.712.80510
    注:甲乙丙酒为甲酸、乙酸、丙酸、酒石酸的体 积比为 1∶47∶7.4∶84。
    下载: 导出CSV

    表 3  不同时间的溶蚀实验前后样品的pH值、总面孔率和物性变化

    Table 3.  Changes in pH value, total porosity, and physical properties of samples before and after experiments at different time.

    实验样品编号实验时间实验后pH原孔隙度(%)实验后孔隙度(%)原渗透率(md)实验后渗透率(md)总面孔率(%)
    C6-2-11d3.018.2338.4650.01380.01415
    C6-2-22d3.47.2967.4870.01010.01817
    C6-2-33d3.527.4887.7560.01110.02669
    C6-2-44d3.527.9058.420.01010.02685
    C6-2-55d3.676.9747.3610.01030.028310
    C6-2-66d3.728.0328.430.01250.039614
    C6-2-77d3.87.4077.7410.01190.038413
    下载: 导出CSV

    表 4  不同类型有机酸溶蚀实验后样品的pH值、孔隙度和总面孔率统计数据

    Table 4.  Statistical data on pH value, porosity, and total porosity of samples in different types of organic acid dissolution experiments.

    实验样品编号实验条件原始pH值实验后的pH值实验后孔隙度(%)总面孔率(%)
    C6-1-0去离子水,25℃,9d--9.7946
    C6-1-5酒石酸,95℃,9d2.53.2610.4486
    C6-1-6乙酸,95℃,9d2.53.610.2920
    C6-1-7甲乙丙酸a,95℃,9d2.53.8112.062320
    C6-1-8甲乙丙酒酸b,95℃,9d2.53.712.808510
    注:a为甲酸、乙酸、丙酸的体积比为1∶47∶7.4; b为甲酸、乙酸、丙酸、酒石酸的体积比为1∶47∶7.4∶84。下同。
    下载: 导出CSV

    表 5  不同类型有机酸溶蚀实验前后样品的pH值、总面孔率和物性变化

    Table 5.  Changes in pH value, total porosity, and physical properties of samples before and after different types of organic acid dissolution experiments.

    实验样品编号溶液配比实验前pH值实验后pH值原始孔隙度(%)实验后孔隙度(%)原始渗透率(md)实验后渗透率(md)总面孔率(%)
    C6-2-0去离子水-7.947.4017.4720.01410.01845
    C6-2-8酒石酸2.53.477.3487.5410.01330.02618
    C6-2-9乙酸2.53.587.4257.9210.0130.03728
    C6-2-10甲酸2.53.557.8728.3630.01260.02856
    C6-2-11丙酸2.53.657.7648.7510.01310.030110
    C6-2-12甲乙丙酸2.53.678.2529.1640.01220.03118
    C6-2-13甲乙丙酒酸2.53.728.0328.430.01250.039614
    下载: 导出CSV
  • [1]

    王艳忠,操应长,葸克来,等. 碎屑岩储层地质历史时期孔隙度演化恢复方法——以济阳坳陷东营凹陷沙河街组四段上亚段为例[J]. 石油学报,2013,34(6):12.

    Wang Y Z,Cao Y C,Xian K L,et al. The method of porosity evolution and restoration in clastic rock reservoir during geological history—Taking the upper sub member of the fourth member of Shahejie Formation in Dongying Depression of Jiyang Depression as an example[J]. Journal of Petroleum, 2013, 34(6):12.

    [2]

    Guo Q L,Wang S J,Chen X M. Assessment on tight oil resources in major basins in China[J]. Journal of Asian Earth Sciences, 2019, 178:52−63.

    [3]

    钟大康,朱筱敏,周新源,等. 次生孔隙形成期次与溶蚀机理——以塔中地区志留系沥青砂岩为例[J]. 天然气工业,2006,26(9):21−24.

    Zhong D K,Zhu X M,Zhou X Y,et al. Formation stages and dissolution mechanism of secondary pores:Taking Silurian bituminous sandstone in Tazhong area as an example[J]. Natural Gas Industry, 2006, 26(9):21−24.

    [4]

    Ronald S, Laura J, Crossey E, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin 1989, 73(1): 1–23.

    [5]

    Meshri I D. On the reactivity of carbonic and organic acids and generation of secondary porosity[J]. SEPM, 1986, 38:123−128.

    [6]

    Paul D,Robert E,Sweeney G,et al. Soil gas methane at petroleum contaminated sites:Forensic determination of origin and source[J]. Environmental Forensics, 2000, 1(1):3−10. doi: 10.1006/enfo.1998.0002

    [7]

    杨俊杰,黄思静. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发,1995,22(4):10.

    Yang J J,Huang S J. Experimental simulation of dissolution of feldspar sandstone by acetic acid[J]. Petroleum Exploration and Development, 1995, 22(4):10.

    [8]

    Macgowan D B,Fisher K J,Surdam R C. Alumino-silicate dissolution in the subsurface:Experimental simulation of a specific geologic environment[J]. AAPG Bulletin, 1986, 70:10−48.

    [9]

    于川淇,宋晓蛟,李景景,等. 长石溶蚀作用对储层物性的影响——以渤海湾盆地东营凹陷为例[J]. 石油与天然气地质,2013,34(6):765−770.

    Yu C Q,Song X J,Li J J,et al. The influence of feldspar dissolution on reservoir physical properties—Taking Dongying Depression in Bohai Bay Basin as an example[J]. Petroleum and Natural Gas Geology, 2013, 34(6):765−770.

    [10]

    罗静兰,Ketzer J M,李文厚,等. 延长油田侏罗系—上三叠统层序地层与生储盖组合[J]. 石油与天然气地质,2001,22(4):337−401. doi: 10.3321/j.issn:0253-9985.2001.04.011

    Luo J L,Ketzer J M,Li W H,et al. Jurassic upper Triassic sequence stratigraphy and source reservoir cap rock assemblage of Yanchang oilfield[J]. Oil and Gas Geology, 2001, 22(4):337−401. doi: 10.3321/j.issn:0253-9985.2001.04.011

    [11]

    罗静兰,罗晓容,白玉彬,等. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响[J]. 地球科学与环境学报,2016,38(1):79−92.

    Luo J L,Luo X R,Bai Y B,et al. Influence of differential diagenetic evolution process on reservoir densification timing and pore evolution[J]. Journal of Earth Science and Environment, 2016, 38(1):79−92.

    [12]

    季汉成,徐珍. 深部碎屑岩储层溶蚀作用实验模拟研究[J]. 地质学报,2007,2(2):212−219. doi: 10.3321/j.issn:0001-5717.2007.02.010

    Ji H C,Xu Z. Experimental simulation study on dissolution of deep clastic rock reservoir[J]. Acta Geologica Sinica, 2007, 2(2):212−219. doi: 10.3321/j.issn:0001-5717.2007.02.010

    [13]

    向廷生,蔡春芳,付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报,2004(4):597−602. doi: 10.3969/j.issn.1000-0550.2004.04.007

    Xiang T S,Cai C F,Fu H E. Simulation experiment of feldspar dissolution in carboxylic acid solution at different temperatures[J]. Acta Sedimentologica Sinica, 2004(4):597−602. doi: 10.3969/j.issn.1000-0550.2004.04.007

    [14]

    范明,黄继文,陈正辅. 塔里木盆地库车坳陷烃源岩热模拟实验及油气源对比[J]. 石油实验地质,2009,31(5):518−521. doi: 10.11781/sysydz200905518

    Fan M,Huang J W,Chen Z F. Thermal simulation experiment of hydrocarbon source rocks and correlation of oil and gas sources in Kuqa Depression,Tarim Basin[J]. Petroleum Geology & Experiment, 2009, 31(5):518−521. doi: 10.11781/sysydz200905518

    [15]

    曹平,宁果果,范祥,等. 不同温度的水岩作用对岩石节理表面形貌特征的影响[J]. 中南大学学报(自然科学版),2013,44(4):1510−1516.

    Cao P,Ning G G,Fan X,et al. The influence of water rock interaction at different temperatures on the surface morphology of rock joints[J]. Journal of Central South University (Natural Science Edition), 2013, 44(4):1510−1516.

    [16]

    刘锐娥,吴浩,魏新善,等. 酸溶蚀模拟实验与致密砂岩次生孔隙成因机理探讨:以鄂尔多斯盆地盒8段为例[J]. 高校地质学报,2015,21(4):758−766.

    Liu R E,Wu H,Wei X S,et al. Acid dissolution simulation experiment and discussion on the formation mechanism of secondary pores in tight sandstone:Taking the 8 Member of Ordos Basin as an example[J]. Journal of University Geology, 2015, 21(4):758−766.

    [17]

    王琪,许勇,李树同,等. 鄂尔多斯盆地姬塬地区长8致密储层溶蚀作用模拟及其影响因素[J]. 地球科学与环境学报,2017,39(2):225−237.

    Wang Q,Xu Y,Li S T,et al. Corrosion simulation of Chang 8 tight reservoir in Jiyuan area of Ordos Basin and its influencing factors[J]. Journal of Earth Science and Environment, 2017, 39(2):225−237.

    [18]

    吴泓辰,张晓丽,何金先,等. 致密砂岩长石溶蚀机制及其影响因素[J]. 石油化工高等学校学报,2017,30(5):42−49.

    Wu H C,Zhang X L,He J X,et al. The dissolution mechanism of feldspar in tight sandstone and its influencing factors[J]. Journal of Petrochemical University, 2017, 30(5):42−49.

    [19]

    Yuan G H,Cao Y C. Coupled mineral alteration and oil degradation in thermal oil-water-feldspar systems and implications for organic-inorganic interactions in hydrocarbon reservoirs[J]. Geochimica et Cosmochimica Acta, 2019, 248:61−87. doi: 10.1016/j.gca.2019.01.001

    [20]

    Crundwel F K. The mechanism of dissolution of the feldspars:Part Ⅰ. Dissolution at conditions far from equilibrium[J]. Hydrometallurgy, 2015, 151:151−162. doi: 10.1016/j.hydromet.2014.10.006

    [21]

    Crundwel F K. The mechanism of dissolution of minerals in acidic and alkaline solutions:Part Ⅴ. Surface charge and zeta potential[J]. Hydrometallurgy, 2016, 161:174−184. doi: 10.1016/j.hydromet.2016.01.031

    [22]

    孙小龙,张宪国,林承焰,等. 基于核磁共振标定的高压压汞孔喉分布定量评价方法[J]. 岩矿测试,2017,36(6):601−607.

    Sun X L,Zhang X G,Lin C Y,et al. Quantitative evaluation method for high-pressure mercury injection pore throat distribution based on nuclear magnetic resonance calibration[J]. Rock and Mineral Analysis, 2017, 36(6):601−607.

    [23]

    葛云锦,任来义,贺永红,等. 鄂尔多斯盆地富县—甘泉地区三叠系延长组7油层组密油富集主控因素[J]. 石油与天然气地质,2018,39(6):1190−1200. doi: 10.11743/ogg20180609

    Ge Y J,Ren L Y,He Y H,et al. Main controlling factors of dense oil enrichment in Triassic Yanchang Formation 7 oil-bearing formation in Fuxian Ganquan area of Ordos Basin[J]. Petroleum and Natural Gas Geology, 2018, 39(6):1190−1200. doi: 10.11743/ogg20180609

    [24]

    曾溅辉,朱志强,吴琼. 烃源岩的有机酸生成及其影响因素的模拟实验研究[J]. 沉积学报,2007,25(6):847−851.

    Zeng Z H, Zhu Z Q, Wu Q, et al. Simulation experiment study on organic acid generation in Source rock and its influencing factors[J]. Journal of Sedimentation, 2007, 25(6):847−851.

    [25]

    曾溅辉,杨智峰,冯枭,等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展,2014,29(6):651−661.

    Zeng J H,Yang Z F,Feng X,et al. Research status and key scientific issues of tight reservoir oil and gas accumulation mechanism[J]. Progress in Earth Science, 2014, 29(6):651−661.

    [26]

    朱晴,乔向阳,张磊. 高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用[J]. 岩矿测试,2020,39(3):373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138

    Zhu Q,Qiao X Y,Zhang L. Application of high-pressure mercury injection in characterizing pore throat distribution and early productivity evaluation of tight gas reservoirs[J]. Rock and Mineral Analysis, 2020, 39(3):373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138

    [27]

    Yang F,Xue L H,Yang S,et al. Characteristics of organic acids in lacustrine organic-rich shale,Ordos Basin,China[J]. Petroleum Science and Technology, 2019, 37:876−881. doi: 10.1080/10916466.2018.1539753

    [28]

    栾国强,董春梅,马存飞,等. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征[J]. 沉积学报,2016,34(6):1208−1216.

    Luan G Q,Dong C M,Ma C F,et al. Diagenesis and evolution characteristics of organic rich shale based on thermal simulation experiment[J]. Journal of Sedimentology, 2016, 34(6):1208−1216.

    [29]

    黄思静,梁瑞,黄可可,等. 鄂尔多斯盆地上古生界碎屑岩储层中的鞍形白云石胶结物及其对储层的影响[J]. 成都理工大学学报(自然科学版),2010,37(4):366−376.

    Huang S J,Liang R,Huang K K,et al. Saddle dolomite cement in upper Paleozoic clastic rock reservoirs in Ordos Basin and its impact on reservoirs[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2010, 37(4):366−376.

    [30]

    汪洋,李树同,牟炜卫,等. 姬塬西部地区长8-1致密储层特征及孔隙度演化分析[J]. 岩性油气藏,2016,28(4):59−66. doi: 10.3969/j.issn.1673-8926.2016.04.008

    Wang Y,Li S T,Mou W W,et al. Chang 8,Western Jiyuan 8-1. Analysis of tight reservoir characteristics and porosity evolution[J]. Lithologic Reservoirs, 2016, 28(4):59−66. doi: 10.3969/j.issn.1673-8926.2016.04.008

    [31]

    杨磊磊. 酸性流体参与的成岩过程中水岩化学作用及对砂岩储层孔隙度的影响[D]. 长春: 吉林大学, 2015.

    Yang L L. Chemical action of water and rock during diagenesis with acid fluid participation and its impact on sandstone reservoir porosity[D]. Changchun: Jilin University, 2015.

    [32]

    Huang S J,Huang K K,Feng W L,et al. Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis—A case study on the upper Paleozoic,Ordos Basin and Xujiahe Formation,western Sichuan Depression[J]. Geochimica, 2009, 38:498−506.

    [33]

    Welch S A,Ullman W J. Feldspar dissolution in acidic and organic solutions:Compositional and pH dependence of dissolution rate[J]. Geochimica et Cosmochimica Acta, 1996(16):2939−2948.

  • 加载中

(7)

(5)

计量
  • 文章访问数:  1501
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2022-11-21
修回日期:  2022-12-23
录用日期:  2023-04-06
刊出日期:  2023-06-30

目录