中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

辽东前寒武纪沉积变质型铁矿床中伴生铀矿的成矿时代与测年结果可靠性分析

孙欣宇, 李立兴, 李厚民, 章永梅, 孟洁, 李小赛, 王亿. 辽东前寒武纪沉积变质型铁矿床中伴生铀矿的成矿时代与测年结果可靠性分析[J]. 岩矿测试, 2023, 42(6): 1090-1103. doi: 10.15898/j.ykcs.202301020001
引用本文: 孙欣宇, 李立兴, 李厚民, 章永梅, 孟洁, 李小赛, 王亿. 辽东前寒武纪沉积变质型铁矿床中伴生铀矿的成矿时代与测年结果可靠性分析[J]. 岩矿测试, 2023, 42(6): 1090-1103. doi: 10.15898/j.ykcs.202301020001
SUN Xinyu, LI Lixing, LI Houmin, ZHANG Yongmei, MENG Jie, LI Xiaosai, WANG Yi. The Ore-forming Age of the Uranium Mineralization Associated with Precambrian Sedimentary-Metamorphic Iron Deposits in Eastern Liaoning Province and Reliability Analysis of Dating Results[J]. Rock and Mineral Analysis, 2023, 42(6): 1090-1103. doi: 10.15898/j.ykcs.202301020001
Citation: SUN Xinyu, LI Lixing, LI Houmin, ZHANG Yongmei, MENG Jie, LI Xiaosai, WANG Yi. The Ore-forming Age of the Uranium Mineralization Associated with Precambrian Sedimentary-Metamorphic Iron Deposits in Eastern Liaoning Province and Reliability Analysis of Dating Results[J]. Rock and Mineral Analysis, 2023, 42(6): 1090-1103. doi: 10.15898/j.ykcs.202301020001

辽东前寒武纪沉积变质型铁矿床中伴生铀矿的成矿时代与测年结果可靠性分析

  • 基金项目: 国家重点研发计划项目(2022YFC2905400, 2022YFC2903701);国家自然科学基金项目(42072112)
详细信息
    作者简介: 孙欣宇,硕士研究生,矿床学专业。E-mail:sxy199809@126.com。
    通讯作者: 李立兴,博士,研究员,从事金属矿床成矿作用研究。E-mail:llixing@cags.ac.cn。
  • 中图分类号: O785.5;P612;P597.3

The Ore-forming Age of the Uranium Mineralization Associated with Precambrian Sedimentary-Metamorphic Iron Deposits in Eastern Liaoning Province and Reliability Analysis of Dating Results

More Information
  • 辽东地区是中国成矿时代最古老的铀矿矿集区,有单铀型和铁矿伴生型两种,其中单铀型矿床成矿年龄已基本厘定,而铁矿伴生型铀矿成矿年龄尚不明确,制约了该类矿床的成因认识。晶质铀矿是铁矿伴生型铀矿中最主要的含铀矿石矿物,对其开展测年能够直接厘定铀矿成矿时代。本文对翁泉沟富蛇纹石磁铁矿矿石和弓长岭石榴子石蚀变岩中的晶质铀矿进行电子探针(EPMA)测年,并利用激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)对翁泉沟富蛇纹石磁铁矿矿石中的晶质铀矿进行U-Pb测年,两种测年结果相互验证,获得辽东地区铁矿伴生型铀矿的成矿时代为~1.85Ga,并在~1.78Ga遭受了后期热液事件的改造,与单铀型矿床成矿年龄一致,说明辽东地区单铀型和铁矿伴生型铀矿都形成于碰撞后伸展环境。辽东地区铁矿伴生型铀矿不同矿床的成矿热液在流体成分和温度上有差别,但都具有碱性和氧化的特征。

  • 加载中
  • 图 1  (a)华北克拉通古元古代构造带示意图和(b)辽东地区地质及古元古代热液铀矿分布图(修改据Zhao等23, 2005; 郭春影等7, 2017)

    Figure 1. 

    图 2  翁泉沟和弓长岭铁矿床中晶质铀矿赋存状态和晶质铀矿电子探针及电感耦合等离子体质谱打点位置

    Figure 2. 

    图 3  辽东(a)翁泉沟富蛇纹石磁铁矿矿石和(b)弓长岭二矿区石榴子石蚀变岩中晶质铀矿电子探针年龄频率分布图

    Figure 3. 

    图 4  翁泉沟矿床富蛇纹石磁铁矿矿石中晶质铀矿U-Pb谐和图

    Figure 4. 

    图 5  (a) 翁泉沟矿床富蛇纹石磁铁矿矿石中晶质铀矿电子探针年龄与SiO2+CaO+FeO相关关系图; (b)翁泉沟矿床EPMA和LA-ICP-MS法对应点测年结果关系图

    Figure 5. 

    表 1  翁泉沟富蛇纹石磁铁矿矿石和弓长岭石榴子石蚀变岩中晶质铀矿电子探针分析数据及年龄计算

    Table 1.  EPMA analytical results and age caculations of uraninites of the serpentine-enriched magnetite ore from the Wengquangou deposit and the garnet altered rock from the Gongchangling deposit

    测点编号UO2
    (%)
    ThO2
    (%)
    PbO
    (%)
    SiO2
    (%)
    CaO
    (%)
    FeO
    (%)
    Y2O3
    (%)
    La2O3
    (%)
    Ce2O3
    (%)
    Nd2O3
    (%)
    Total
    (%)
    年龄
    (Ma)
    WQG5-1 68.55 2.83 16.29 0.79 2.05 0.60 1.16 92.28 1862
    WQG5-2 71.22 1.79 17.16 0.03 1.05 1.70 0.09 0.38 0.65 94.06 1899
    WQG5-3 67.48 2.30 14.04 0.03 0.23 1.84 4.59 0.21 0.55 1.86 93.13 1635
    WQG5-4 69.44 1.60 14.57 0.06 0.25 0.11 3.95 0.15 0.43 0.65 91.21 1655
    WQG5-5 66.69 3.07 15.22 0.01 0.20 0.22 4.45 0.21 0.60 1.72 92.38 1785
    WQG5-6 66.55 3.15 14.89 0.06 0.28 0.08 4.05 0.08 0.55 1.85 91.52 1749
    WQG5-7 67.11 2.33 15.26 0.02 0.21 4.38 0.03 0.29 1.25 90.86 1786
    WQG5-8.1 66.99 2.57 15.25 0.04 0.21 0.06 4.28 0.02 0.54 1.44 91.40 1785
    WQG5-8.2 66.86 2.70 15.60 0.18 0.09 4.12 0.11 0.50 1.38 91.53 1828
    WQG5-9.1 66.90 1.20 15.94 0.02 0.71 0.08 2.87 0.24 2.91 2.53 93.39 1882
    WQG5-9.2 65.99 1.07 15.47 0.02 0.66 0.03 2.90 0.06 3.34 2.95 92.48 1854
    WQG5-10 67.20 1.14 15.50 0.03 0.25 0.29 3.51 1.89 2.36 92.15 1823
    WQG5-11 67.54 2.27 15.86 0.03 0.46 0.98 3.18 0.36 1.07 1.92 93.66 1845
    WQG5-12 67.20 1.61 15.96 0.03 0.41 0.13 2.44 0.10 3.01 2.74 93.64 1872
    WQG5-13.1 67.15 2.63 14.92 0.28 0.04 3.93 0.39 1.33 90.67 1741
    WQG5-13.2 68.32 3.06 16.48 0.02 0.44 0.01 2.58 0.61 1.40 92.93 1888
    WQG5-13.3 68.26 2.86 15.27 0.03 0.26 0.15 3.29 0.20 0.29 1.31 91.91 1752
    WQG5-13.4 67.06 2.66 15.31 0.03 0.25 3.98 0.06 0.24 1.40 90.99 1790
    WQG5-13.5 66.03 3.66 14.81 0.01 0.19 0.11 4.18 0.17 0.44 1.34 90.93 1748
    WQG5-14.1 67.09 2.42 15.90 0.02 0.27 0.06 4.11 0.40 1.40 91.67 1860
    WQG5-14.2 70.54 1.91 16.57 1.24 0.22 1.84 0.48 1.12 93.92 1850
    WQG5-15 67.42 2.47 15.66 0.04 0.22 0.04 4.07 0.43 1.51 91.85 1822
    WQG5-16 67.01 2.40 15.04 0.04 0.29 0.08 4.17 0.04 0.63 1.36 91.05 1762
    WQG5-17 68.38 2.74 16.31 0.02 0.72 0.08 2.38 0.16 0.49 1.51 92.77 1869
    WQG5-18.1 67.93 3.01 14.73 0.07 0.18 3.83 0.35 1.48 91.57 1697
    WQG5-18.2 69.37 2.84 15.78 0.04 0.89 0.04 2.29 0.83 1.50 93.56 1782
    WQG5-18.3 69.94 3.06 13.65 0.03 0.52 0.07 3.01 0.20 0.72 1.68 92.88 1528
    WQG5-18.4 68.52 2.73 15.47 0.04 0.28 0.04 3.17 0.09 0.55 1.21 92.09 1769
    WQG5-19 67.93 1.49 14.68 0.11 0.32 0.65 2.70 0.17 2.94 2.79 93.77 1705
    WQG5-20 71.85 2.11 15.46 0.06 1.11 3.49 1.62 0.10 0.13 1.09 97.02 1694
    WQG5-21.1 69.54 2.11 15.79 0.01 0.93 0.20 2.19 0.15 0.65 1.60 93.16 1786
    WQG5-21.2 69.22 1.91 15.61 0.82 0.29 2.25 0.03 0.77 1.48 92.38 1775
    WQG5-22 66.55 1.15 15.59 0.01 0.78 0.07 3.04 0.29 2.89 2.53 92.90 1851
    WQG5-23 66.47 2.69 15.21 0.02 0.21 0.23 4.22 0.11 0.59 1.30 91.04 1793
    WQG5-24 67.68 1.64 16.28 0.01 0.49 0.24 2.96 0.18 1.06 1.74 92.29 1896
    WQG5-25 67.27 2.52 14.48 0.04 0.20 0.32 4.11 0.10 0.39 0.99 90.42 1689
    WQG5-26 68.83 2.84 15.96 0.84 0.45 2.05 0.21 0.73 1.21 93.11 1816
    WQG5-27 69.39 2.69 15.84 0.38 0.07 2.75 0.15 0.56 1.48 93.29 1790
    WQG5-28 69.92 1.53 11.73 0.09 0.43 0.44 4.00 0.27 1.27 1.93 91.62 1324
    WQG5-29 66.34 2.84 14.95 0.02 0.19 0.04 3.95 0.46 1.53 90.31 1765
    WQG5-30 69.57 1.92 15.95 0.01 1.13 0.06 2.19 0.01 0.72 1.54 93.08 1805
    WQG5-31 66.83 2.69 15.06 0.19 0.24 3.93 0.03 0.42 1.19 90.56 1766
    WQG5-32 66.95 2.24 14.99 0.04 0.22 0.34 4.29 0.06 0.36 1.19 90.68 1760
    WQG5-33 67.50 2.41 15.65 0.20 0.03 4.20 0.20 0.42 1.33 91.94 1820
    WQG5-34.1 68.65 2.81 16.32 0.06 0.80 0.02 2.08 0.05 0.72 1.46 92.97 1863
    WQG5-34.2 66.60 2.64 15.11 0.02 0.18 0.03 4.20 0.06 0.29 1.02 90.13 1778
    WQG5-34.3 67.69 2.57 14.49 0.13 0.34 0.27 3.70 0.04 0.29 1.49 91.02 1679
    WQG5-34.4 63.76 2.48 13.81 1.77 0.33 1.15 3.33 0.30 0.52 1.27 88.71 1698
    GCL2-1 65.18 7.51 15.86 0.07 0.36 0.61 0.18 0.52 90.29 1858
    GCL2-2 64.39 7.95 15.53 0.02 0.10 0.30 0.72 0.11 0.71 89.83 1837
    GCL2-3 70.15 6.29 15.62 0.03 0.06 0.31 0.03 0.49 92.97 1715
    GCL2-4 69.44 7.32 15.80 0.04 0.03 0.04 0.21 0.17 0.02 0.52 93.58 1743
    GCL2-5 69.92 4.75 17.03 0.06 0.09 0.01 0.50 0.13 0.09 0.18 92.75 1891
    GCL2-6 70.47 5.21 15.84 0.05 0.07 0.02 0.50 0.11 0.21 92.48 1741
    GCL2-7 69.46 6.28 16.95 0.05 0.04 0.08 0.09 0.18 93.11 1879
    GCL2-8 69.18 6.70 16.84 0.05 0.08 0.33 0.11 93.27 1870
    GCL2-9 69.46 5.85 15.79 0.07 0.03 0.04 0.67 0.21 0.12 0.54 92.79 1755
    GCL2-10 67.61 7.35 16.44 0.04 0.02 0.02 0.27 0.06 0.17 0.35 92.33 1861
    GCL2-11 70.97 4.27 16.57 0.13 0.03 0.02 0.13 0.19 0.27 92.57 1817
    GCL2-12 68.81 5.56 16.32 0.08 0.27 0.21 0.22 0.53 92.00 1832
    GCL2-13 69.06 5.34 16.07 0.21 0.33 0.18 0.12 0.44 91.73 1800
    GCL2-14 65.22 5.18 14.67 0.03 1.09 0.16 0.16 0.43 86.93 1739
    注:“−”表示实验结果未达到检测限。
    下载: 导出CSV

    表 2  翁泉沟富蛇纹石磁铁矿石中晶质铀矿LA-ICP-MS法U-Pb同位素分析结果和对应电子探针测试点

    Table 2.  LA-ICP-MS isotope dating results of uraninites of the serpentine-enriched magnetite ore from the Wengquangou deposit and corresponding EPMA analytical spots

    测点编号普通Pb
    含量
    207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb206Pb/238U不谐和度
    (%)
    对应电子
    探针测点
    电子探针
    年龄
    (Ma)
    (μg/g)比值1σ比值1σ比值1σ年龄
    (Ma)
    1σ
    (Ma)
    年龄
    (Ma)
    1σ
    (Ma)
    WQG5-01 53.9 0.1154 0.0007 4.7798 0.0593 0.3000 0.0030 1887 11 1691 15 10.4 WQG5-1 1862
    WQG5-02 41.6 0.1150 0.0007 4.6733 0.0470 0.2953 0.0033 1880 16 1668 17 11.3 WQG5-2 1899
    WQG5-03 96.5 0.1143 0.0007 4.6626 0.0506 0.2967 0.0041 1869 11 1675 20 10.4 WQG5-9.2 1854
    WQG5-04 22.9 0.1116 0.0006 4.8099 0.0624 0.3129 0.0042 1826 9 1755 21 3.9 WQG5-9.1 1882
    WQG5-05 20.2 0.1110 0.0013 4.4265 0.0509 0.2920 0.0048 1816 22 1651 24 9.1 WQG5-10 1823
    WQG5-06 26.8 0.1145 0.0010 4.2651 0.0623 0.2706 0.0034 1872 17 1544 17 17.5 WQG5-11 1845
    WQG5-07 38.2 0.1127 0.0006 4.7316 0.0588 0.3047 0.0038 1844 9 1715 19 7.0 WQG5-12 1872
    WQG5-08 18.4 0.1119 0.0015 5.1489 0.0709 0.3358 0.0049 1831 24 1866 24 −1.9 WQG5-14.1 1860
    WQG5-09 13.0 0.1141 0.0010 5.6601 0.0810 0.3596 0.0042 1866 15 1980 20 −6.1 WQG5-14.2 1850
    WQG5-10 27.1 0.1120 0.0007 5.4790 0.0571 0.3548 0.0037 1832 10 1957 18 −6.8 WQG5-17 1869
    WQG5-11 52.0 0.1145 0.0009 4.9450 0.0636 0.3136 0.0040 1873 15 1758 20 6.1 WQG5-7 1786
    WQG5-12 60.3 0.1090 0.0007 4.5419 0.0625 0.3030 0.0046 1783 12 1706 23 4.3 WQG5-34.2 1778
    WQG5-13 107.0 0.1093 0.0007 4.9063 0.0836 0.3257 0.0055 1788 12 1818 27 −1.7 WQG5-34.3 1679
    WQG5-14 19.4 0.1091 0.0006 4.6320 0.0571 0.3079 0.0037 1784 9 1731 18 3.0 WQG5-16 1762
    WQG5-15 91.3 0.1082 0.0010 4.8412 0.0861 0.3245 0.0050 1769 18 1812 24 −2.4 WQG5-6 1749
    WQG5-16 35.8 0.1096 0.0008 4.8450 0.0550 0.3209 0.0036 1794 13 1794 18 0 WQG5-13.3 1752
    WQG5-17 53.3 0.1082 0.0007 4.5799 0.0523 0.3073 0.0037 1770 11 1727 18 2.4 WQG5-13.4 1790
    WQG5-18 49.5 0.1102 0.0007 4.5852 0.0578 0.3023 0.0038 1802 12 1703 19 5.5 WQG5-18.2 1782
    WQG5-19 63.7 0.1099 0.0007 4.5958 0.0546 0.3040 0.0036 1798 11 1711 18 4.8 WQG5-8.1 1785
    WQG5-20 35.9 0.1117 0.0007 4.2390 0.0521 0.2754 0.0033 1827 11 1568 17 14.2 WQG5-8.2 1828
    下载: 导出CSV
  • [1]

    Skirrow R G,van der Wielen S E,Champion D C,et al. Lithospheric architecture and mantle metasomatism linked to iron oxide Cu-Au ore formation:Multidisciplinary evidence from the Olympic Dam region,South Australia[J]. Geochemistry,Geophysics,Geosystems, 2018, 19(8): 2673−2705.

    [2]

    Robb L J,Davis D W,Kamo S L,et al. Ages of altered granites adjoining the Witwatersrand Basin with implications for the origin of gold and uranium[J]. Nature, 1992, 357(6380): 677−680. doi: 10.1038/357677a0

    [3]

    蔡煜琦,张金带,李子颖,等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6): 1051−1069.

    Cai Y Q,Zhang J D,Li Z Y,et al. Characteristics and metallogenic regularity of uranium deposits in China[J]. Acta Geographica Sinica, 2015, 89(6): 1051−1069.

    [4]

    李延河,段超,赵悦,等. 氧化还原障在热液铀矿成矿中的作用[J]. 地质学报, 2016, 90(2): 201−218.

    Li Y H,Duan C,Zhao Y,et al. The role of oxidizing reducing barrier in mineralization of hydrothermal uranium ore[J]. Acta Geologica Sinica, 2016, 90(2): 201−218.

    [5]

    朱鹏飞,蔡煜琦,郭庆银,等. 中国铀矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 148−158.

    Zhu P F,Cai Y Q,Guo Q Y,et al. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China[J]. Earth Science Frontiers, 2018, 25(3): 148−158.

    [6]

    吴迪,刘永江,李伟民,等. 辽东铀成矿带连山关地区韧性剪切带与铀成矿作用[J]. 岩石学报, 2020, 36(8): 2571−2588. doi: 10.18654/1000-0569/2020.08.17

    Wu D,Liu Y J,Li W M,et al. Ductile shear zone and uranium mineralization in the Lianshanguan area of Eastern Liaoning uranium metallogenic belt[J]. Acta Petrologica Sinica, 2020, 36(8): 2571−2588. doi: 10.18654/1000-0569/2020.08.17

    [7]

    郭春影,李子颖,韩军,等. 辽东大石桥组蛇纹石化大理岩中铀矿化特征及形成时代[J]. 地质通报, 2017, 36(4): 565−574.

    Guo C Y,Li Z Y,Han J,et al. Geological features and dating of uraninite in serpentinized dolomite marbles of the Dashiqiao Formation in Eastern Liaoning Province[J]. Geological Bulletin of China, 2017, 36(4): 565−574.

    [8]

    郭春影,韩军,徐浩,等. 辽东古元古代热液铀矿床形成的大地构造背景[J]. 大地构造与成矿学, 2018, 42(5): 893−907.

    Guo C Y,Han J,Xu H,et al. Tectonic settings of Paleoproterozoic hydrothermal uranium deposits in Eastern Liaoning Province,China[J]. Geotectonic et Metallogenia, 2018, 42(5): 893−907.

    [9]

    Zhong J R,Guo Z T. The geological characteristics and metallogenetic control factors of the Lianshanguan uranium deposit,Northeast China[J]. Precambrian Research, 1988, 39(1-2): 51−64. doi: 10.1016/0301-9268(88)90050-2

    [10]

    夏毓亮,韩军. 中国最古老铀矿床成矿年龄及铅同位素示踪铀成矿省[J]. 地球学报, 2008, 29(6): 752−760.

    Xia Y L,Han J. Uranium ore-forming ages of the oldest uranium deposits in China and the tracing of uranium metallogenic provinces with lead isotopes[J]. Journal of Earth Sciences, 2008, 29(6): 752−760.

    [11]

    韩军. 鞍本地区早前寒武纪地球化学、年代学及铀成矿作用同位素示踪[D]. 北京: 核工业北京地质研究院, 2009.

    Han J. Early Precambrian geochemistry, chronology and uranium mineralization trace in Ananben area[D]. Beijing: Beijing Institute of Geology of Nuclear Industry, 2009.

    [12]

    陈璋如,王安然. 硼矿床中的原生铀矿物——晶质铀矿和铅铀方钍石[J]. 矿物学报, 1984(3): 259−264,291-292.

    Chen Z R,Wang A R. Primary uranium minerals in boron deposits—Uraninite and aldanite[J]. Acta Mineralogica Sinica, 1984(3): 259−264,291-292.

    [13]

    Lu Y F,Chen Y C,Li H Q,et al. Metallogenic chronology of boron deposits in the Eastern Liaoning Paleoproterozoic rift zone[J]. Acta Geologica Sinica (English Edition), 2005, 79(3): 414−425. doi: 10.1111/j.1755-6724.2005.tb00907.x

    [14]

    赵宇霆,李子颖,郭春影. 辽宁翁泉沟铁-硼-铀矿床成矿年代学研究[J]. 铀矿地质, 2021, 37(3): 433−445.

    Zhao Y T,Li Z Y,Guo C Y. Metallogenic chronology of Wengquangou Fe-B-U deposit in Liaoning[J]. Uranium Geology, 2021, 37(3): 433−445.

    [15]

    Luo Y,Sun M,Zhao G,et al. LA-ICP-MS U-Pb zircon ages of the Liaohe group in the eastern block of the North China Craton:Constraints on the evolution of the Jiao—Liao—Ji belt[J]. Precambrian Research, 2004, 134(3-4): 349−371. doi: 10.1016/j.precamres.2004.07.002

    [16]

    葛祥坤. 电子探针Th-U-Pb微区测年方法及其在铀矿地质研究中的应用前景[J]. 铀矿地质, 2008, 24(3): 175−180.

    Ge X K. Th-U-Pb dating method of electron probe microanalysis and its application foreground in uranium geology research[J]. Uranium Geology, 2008, 24(3): 175−180.

    [17]

    赵慧博,刘亚非,阳珊,等. 电子探针测年方法应用于晶质铀矿的成因类型探讨[J]. 岩矿测试, 2014, 33(1): 102−109.

    Zhao H B,Liu Y F,Yang S,et al. Study on genetic types of crystalline uranium ore by electron probe dating method[J]. Rock and Mineral Analysis, 2014, 33(1): 102−109.

    [18]

    李超,王登红,屈文俊,等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669.

    Li C,Wang D H,Qu W J,et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.

    [19]

    刘勇胜,胡兆初,李明,等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3863−3878.

    Liu Y S,Hu Z C,Li M,et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3863−3878.

    [20]

    汪双双,韩延兵,李艳广,等. 利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J]. 岩矿测试, 2016, 35(4): 349−357.

    Wang S S,Han Y B,Li Y G,et al. U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J]. Rock and Mineral Analysis, 2016, 35(4): 349−357.

    [21]

    胡靓,张德贤,娄威,等. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究[J]. 岩矿测试, 2022, 41(4): 564−574.

    Hu L,Zhang D X,Lou W,et al. In situ LA-ICP-MS determination of trace elements in magnetite from a gypsum-salt bearing iron deposit and geochemical characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564−574.

    [22]

    张招崇,李厚民,李建威,等. 中国铁矿成矿背景与富铁矿成矿机制[J]. 中国科学:地球科学, 2021, 51(6): 827−852.

    Zhang Z C,Li H M,Li J W,et al. Geological settings and metallogenesis of high-grade iron deposits in China[J]. Science China:Earth Sciences, 2021, 51(6): 827−852.

    [23]

    Zhao G C,Sun M,Wilde A,et al. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues tevisited[J]. Precambrian Research, 2005, 136(2): 177−202. doi: 10.1016/j.precamres.2004.10.002

    [24]

    Li S Z,Zhao G. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao—Liao—Ji belt in the eastern block of the North China Craton[J]. Precambrian Research, 2007, 158(1-2): 1−16. doi: 10.1016/j.precamres.2007.04.001

    [25]

    马玉波,张勇,李立兴,等. 古元古代胶—辽—吉带造山后转换机制:来自青城子地区花岗岩体年代学与地球化学特征的制约[J]. 岩石学报, 2022, 38(10): 2971−2987. doi: 10.18654/1000-0569/2022.10.05

    Ma Y B,Zhang Y,Li L X,et al. Orogenic to post-orogenic transition of the Paleoproterozoic Jiao—Liao—Ji belt:Constraints from geochronology and geochemistry of the granites in the Qingchengzi area[J]. Acta Petrologica Sinica, 2022, 38(10): 2971−2987. doi: 10.18654/1000-0569/2022.10.05

    [26]

    王惠初,任云伟,陆松年,等. 辽吉古元古代造山带的地层单元划分与构造属性[J]. 地球学报, 2015, 36(5): 583−598.

    Wang H C,Ren Y W,Lu S N,et al. Stratigraphic units and tectonic setting of the Paleoproterozoic Liao—Ji orogen[J]. Journal of Earth Sciences, 2015, 36(5): 583−598.

    [27]

    刘福来,刘平华,王舫,等. 胶—辽—吉古元古代造山/活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 2015, 31(10): 2816−2846.

    Liu L F,Liu P H,Wang F,et al. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao—Liao—Ji orogenic/mobile belt,North China Craton high-grade iron deposit[J]. Acta Petrologica Sinica, 2015, 31(10): 2816−2846.

    [28]

    胡古月,李延河,范昌福,等. 辽东翁泉沟硼镁铁矿矿床海相蒸发成因:来自稳定同位素地球化学证据[J]. 矿床地质, 2014, 33(4): 821−832. doi: 10.3969/j.issn.0258-7106.2014.04.012

    Hu G Y,Li Y H,Fan C F,et al. The origin of marine evaporation in the Wengquangou boromagite deposit,Eastern Liaoning Province:Evidence from stable isotope geochemistry[J]. Mineral Deposits, 2014, 33(4): 821−832. doi: 10.3969/j.issn.0258-7106.2014.04.012

    [29]

    Li H M,Li L X,Yang X Q,et al. Types and geological characteristics of iron deposits in China[J]. Journal of Asian Earth Sciences, 2015, 103: 2−22. doi: 10.1016/j.jseaes.2014.11.003

    [30]

    李厚民,李延河,李立兴,等. 沉积变质型铁矿成矿条件及富铁矿形成机制[J]. 地质学报, 2022, 96(9): 3211−3233.

    Li H M,Li Y H,Li L X,et al. Ore-forming conditions of the sedimentary metamorphic iron deposit and metallogenesis of the high-grade iron deposit[J]. Acta Geologica Sinica, 2022, 96(9): 3211−3233.

    [31]

    葛祥坤. 电子探针定年技术在铀及含铀矿物测年中的开发与研究[D]. 北京: 核工业北京地质研究院, 2013: 33-80.

    Ge X K. Research and development of electron microprobe dating on uranium minerals and U-bearing minerals[D]. Beijing: Beijing Research Institute of Uranium Geology, 2013: 33-80.

    [32]

    张龙,陈振宇,田泽瑾,等. 电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J]. 岩矿测试, 2016, 35(1): 98−107.

    Zhang L,Chen Z Y,Tian Z J,et al. The application of electron microprobe dating method on uranium minerals in Changjiang granite,Northern Guangdong[J]. Rock and Mineral Analysis, 2016, 35(1): 98−107.

    [33]

    员媛娇,范成龙,吕喜平,等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007

    Yuan Y J,Fan C L,Lyu X P,et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit,Inner Mongolia,China[J]. Rock and Mineral Analysis, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007

    [34]

    Zong K Q,Chen J Y,Hu Z C,et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China:Earth Sciences, 2015, 58(10): 1731−1740.

    [35]

    赵溥云, 李喜斌, 营俊龙, 等. 沥青铀矿铀铅同位素年龄标准物质[R]. 北京: 核工业北京地质研究, 1995: 22.

    Zhao B Y, Li X B, Ying J L, et al. Certified reference material for U-Pb isotopic dating (pitchblende)[R]. Beijing: Beijing Research Institute of Uranium Geology, 1995: 22.

    [36]

    Ranchin G. La géochimie de l’uranium et la différenciation granitique dans la province uranifère du Nord-Limousin[J]. Science Terre, 1968, 13: 161−205.

    [37]

    Bowles J F W. Age dating of individual grains of uraninite in rocks from electron microprobe analysis[J]. Chemical Geology, 1990, 83(1-2): 47−53. doi: 10.1016/0009-2541(90)90139-X

    [38]

    Kempe U. Precise electron microprobe age determination in altered uraninite:Consequences on the intrusion age and the metallogenic significance of Kirchberg granite (Erzgebirge,Germany)[J]. Contributions to Mineralogy and Petrology, 2003, 145: 107−118. doi: 10.1007/s00410-002-0439-5

    [39]

    肖志斌,耿建珍,涂家润,等. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262−273.

    Xiao Z B,Geng J Z,Tu J R,et al. In situ U-Pb isotope dating techniques for sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262−273.

    [40]

    骆金诚,石少华,陈佑纬,等. 铀矿床定年研究进展评述[J]. 岩石学报, 2019, 35(2): 589−605.

    Luo J C,Shi S H,Chen Y W,et al. Review on dating of uranium mineralization[J]. Journal of Petrology, 2019, 35(2): 589−605.

    [41]

    张昭明. 电子探针在测定晶质铀矿年龄中的应用[J]. 放射性地质, 1982(5): 408−411.

    Zhang Z M. The application of electron microprobe on dating uraninite[J]. Radioactive Geology, 1982(5): 408−411.

    [42]

    Grandstaff D E. A kinetic study of the dissolution of uraninite[J]. Economic Geology, 1976, 71(8): 1493−1506. doi: 10.2113/gsecongeo.71.8.1493

    [43]

    Korzer T G,Kyser T K. O,U,and Pb isotopic and chemical variations in uraninite:Implications for determining the temporal and fluid history of ancient terrains[J]. American Mineralogist, 1993, 78: 1262−1274.

    [44]

    Alexandre P,Kyser T K. Effects of cationic substitutions and alteration in uraninite,and implications for the dating of uranium deposits[J]. Canadian Mineralogist, 2005, 43(3): 1005−1017. doi: 10.2113/gscanmin.43.3.1005

    [45]

    赵岩,李生辉,杨中柱,等. 辽东翁泉沟硼矿区二长花岗岩脉锆石U-Pb年龄及对成矿时代的制约[J]. 地质与资源, 2022, 31(3): 342−350.

    Zhao Y,Li S H,Yang Z Z,et al. Zircon U-Pb dating of monzogranite dikes in Wengquangou boron orefield,Eastern Liaoning:Constraints on metallogenic age[J]. Geology and Resources, 2022, 31(3): 342−350.

    [46]

    Li L X,Zi J W,Li H M,et al. High-grade magnetite mineralization at 1.86Ga in Neoarchean banded iron formations,Gongchangling,China:In situ U-Pb geochronology of metamorphic-hydrothermal zircon and monazite[J]. Economic Geology, 2019, 114(6): 1159−1175. doi: 10.5382/econgeo.4678

    [47]

    李三忠,郝德峰,韩宗珠,等. 胶辽地块古元古代构造-热演化与深部过程[J]. 地质学报, 2003, 77(3): 328−340.

    Li S Z,Hao D F,Han Z Z,et al. Paleoproterozoic tectonic-thermal evolution and deep process of Jiaoliao block[J]. Acta Geographica Sinica, 2003, 77(3): 328−340.

    [48]

    牛树银,孙爱群,张建珍,等. 辽宁弓长岭铁矿二矿区构造特征分析[J]. 地质找矿论丛, 2013, 28(2): 167−175.

    Niu S Y,Sun A Q,Zhang J Z,et al. Structural analysis of the second mining district of Gongchangling iron mine in Liaoning Province[J]. Contributions to Geology and Mineral Resources Research, 2013, 28(2): 167−175.

    [49]

    Hu G Y,Li Y H,Fan C F,et al. In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province,Northeastern China[J]. Ore Geology Reviews, 2015, 65(4): 1127−1141.

    [50]

    Fryer B J,Taylor R P. Rare-earth element distributions in uraninites:Implications for ore genesis[J]. Chemical Geology, 1987, 63(1-2): 101−108. doi: 10.1016/0009-2541(87)90077-5

    [51]

    Mukhopadhyay J,Mishra B,Chakrabarti K,et al. Uraniferous paleoplacers of the Meso-Archaean Mahagiri quartzite,Singhbhum Craton,India:Depositional controls,nature and source of >3.0Ga detrital uraninites[J]. Ore Geology Reviews, 2016, 72: 1290−1306. doi: 10.1016/j.oregeorev.2015.05.020

    [52]

    陈佑纬,胡瑞忠,骆金诚,等. 桂北沙子江铀矿床沥青铀矿微区原位年代学和元素分析:对铀成矿作用的启示[J]. 岩石学报, 2019, 35(9): 2679−2694. doi: 10.18654/1000-0569/2019.09.04

    Chen Y W,Hu R Z,Luo J C,et al. In-situ mineral chemistry and chronology analyses of the pitchblende in the Shazijiang uranium deposit and their implications for mineralization[J]. Acta Petrologica Sinica, 2019, 35(9): 2679−2694. doi: 10.18654/1000-0569/2019.09.04

    [53]

    刘明军,李厚民,李立兴,等. 辽宁弓长岭铁矿床二矿区流体包裹体研究[J]. 矿床地质, 2013, 32(5): 989−1002. doi: 10.3969/j.issn.0258-7106.2013.05.011

    Liu M J,Li H M,Li L X,et al. A study of fluid inclusions from No. 2 mining area of Gongchangling iron deposit in Liaoning Province[J]. Mineral Deposits, 2013, 32(5): 989−1002. doi: 10.3969/j.issn.0258-7106.2013.05.011

    [54]

    李雪梅,孙丰月,李碧乐,等. 辽东地区后仙峪及翁泉沟硼矿床流体包裹体特征研究[J]. 现代地质, 2007, 21(4): 645−653.

    Li X M,Sun F Y,Li B L,et al. Study on the fluid inclusions from Houxianyu and Wengquangou borate deposits in Eastern Liaoning Province[J]. Geoscience, 2007, 21(4): 645−653.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  247
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2023-01-02
修回日期:  2023-04-15
录用日期:  2023-06-16
刊出日期:  2023-12-31

目录