Determination of Rare Earth Elements in Coal-related Samples by Inductively Coupled Plasma-Mass Spectrometry with Acid Dissolution
-
摘要:
煤和含煤岩系在特定地质条件下可以富集稀土等金属元素。煤及矸石燃烧后产生的飞灰,其金属元素富集度更高,有望成为稀土等关键矿产的替代来源之一。针对煤系样品有机物含量高、基体组成复杂等问题,本文通过溶样方式、消解酸体系、浸提液、质谱干扰及扣除等条件实验研究,利用高压密闭酸溶法和半密闭酸溶法建立了分别适用于煤和煤系样品中稀土元素的电感耦合等离子体质谱(ICP-MS)分析方法。结果表明,硝酸-氢氟酸高压密闭酸溶法能够实现煤中稀土元素的准确测定,但对煤飞灰和煤矸石的稀土元素回收率不稳定,不同样品稀土回收率在37%~123%之间。在原有消解酸体系中,加入硫酸和高氯酸或改用盐酸复溶,均不能有效地提高稀土元素的回收率。五酸半密闭酸溶可以实现煤飞灰、煤矸石等煤系样品中稀土元素的完全分解。利用X射线衍射(XRD)和扫描电子显微镜(SEM)技术对煤系样品中元素的赋存状态进行了初步解析,揭示了高铝矿物是造成煤矸石等煤系样品中稀土元素溶出率低的主要原因,为实验方案的制定和优化提供了理论依据。利用标准物质和实际样品开展了方法验证,所建方法具有良好的精密度(相对标准偏差为0.05%~9.98%)和正确度(相对误差为−10.2%~7.62%),检出限低,可以实现煤系样品中稀土元素的多元素准确测定,适用于大批量样品中稀土元素的分析测试。
Abstract:BACKGROUND Coal and coal-bearing rock series can enrich beneficial elements such as rare earth under specific geological conditions, forming coal-related key metal deposits. In recent years, highly enriched rare metal elements such as gallium, germanium, uranium, gold, silver and rare earth elements have been successively discovered in coal. The fly ash produced by the combustion of coal and gangue has a higher enrichment degree of rare earth and other elements. These highly enriched metal elements will become one of the alternative sources of rare earth and other strategic key metals. In order to realize the comprehensive utilization of rare earth elements in coal-related samples, it is necessary to objectively evaluate the content level of rare earth elements in coal-related samples. Therefore, it is of great practical significance to establish a set of multielement quantitative analysis methods suitable for rare earth elements in coal-related samples.
OBJECTIVES To establish a set of analytical methods for the determination of rare earth elements in coal-related samples, and provide theoretical basis for the formulation and optimization of experimental schemes by analyzing the occurrence state of elements.
METHODS The method research of rare earth elements in coal-related samples was carried out by using a high-pressure closed acid dissolution method and semi-closed acid dissolution method respectively. The sample mass, dissolution mode, acid decomposition system and extracting solution were analyzed experimentally. The recovery rates of rare earth elements by different methods were compared and analyzed, and the optimal dissolution method was determined. The interferences and interference elimination methods in the mass spectrometry determination of rare earth elements were discussed in detail. The occurrence state of elements in coal-related samples was analyzed by using XRD and SEM techniques, and the reason why the high-pressure closed acid dissolution method could not completely decompose coal gangue, coal fly ash and other samples was explained.
RESULTS Through experimental analysis of conditions such as the sampling weight, the sample dissolution method, the acid digestion system, and the redissolving solution composition, an analytical method for the determination of rare earth elements in coal by ICP-MS with nitric acid-hydrofluoric acid high-pressure closed acid solution was established. The detection limits were between 0.01μg/g and 0.03μg/g. This method could be used to achieve accurate determination of 15 rare earth elements in coal, but the rare earth recovery rate for coal fly ash and coal gangue was unstable, with the rare earth recovery rate ranging from 37% to 123%. Adding sulfuric acid and perchloric acid to the original acid dissolution system, and switching to hydrochloric acid solution for redissolution, cannot effectively improve the decomposition efficiency of rare earth elements. In order to solve the problem of low dissolution rate of rare earth elements in such samples, further experimental research on semi-closed acid dissolution digestion method was carried out. The analysis method of rare earth elements in coal-related samples was established by using semi-closed acid dissolution, which determined the accurate resolution of rare earth elements in coal fly ash and coal gangue samples. The detection limits were between 0.02μg/g and 0.05μg/g. The occurrence state of elements in coal-related samples was preliminarily analyzed by X-ray diffraction and scanning electron microscopy. It was revealed that high aluminum minerals were the main reason for the low dissolution rate of rare earth elements in coal-based samples such as coal gangue, which provided a theoretical basis for the formulation and optimization of experimental schemes. Method verification was carried out using standard materials and actual samples. The developed method had good precision (relative standard deviation was 0.05%-9.98%) and accuracy (relative error was from −10.2% to 7.62%).
CONCLUSIONS The two analysis methods investigated in this paper have low detection limit, high precision and accuracy, can realize simultaneous determination of rare earth elements in coal-related samples, and are suitable for large-scale analysis and testing of rare earth elements in samples.
-
-
表 1 电感耦合等离子体质谱仪工作参数
Table 1. Working parameters of ICP-MS.
工作参数 设定值 工作参数 设定值 ICP功率 1400W 超锥孔径 1.1mm 冷却气流速 16.0L/min 跳峰 3点/质量 辅助气流速 1.2L/min 停留时间 20ms/点 雾化气流速 0.85L/min 扫描次数 30次 取样锥孔径 1.0mm 测量时间 38s 表 2 分析同位素及干扰信息
Table 2. Isotope and interference information.
分析同位素 内标 干扰校正公式 干扰注释 监测同位素 89Y 103Rh / / / 138Ba 103Rh −0.000901×139La−0.002838×140Ce / / 139La 187Re / / / 140Ce 187Re / / / 141Pr 187Re / / / 142Nd 187Re −0.125653×140Ce / / 152Sm 187Re −0.012780×157Gd 136Ba16O 136Ba 153Eu 187Re / 137Ba16O 137Ba 158Gd 187Re −0.004016×163Dy 142Ce16O,141Pr16OH,142Nd16O 142Ce,141Pr,142Nd 159Tb 187Re / 143Nd16O 143Nd 164Dy 187Re −0.047902×166Er 148Nd16O 148Nd 165Ho 187Re / / / 166Er 187Re / 150Nd16O 150Nd 169Tm 187Re / / / 174Yb 187Re −0.005865×178Hf / / 175Lu 187Re / / / 注:干扰注释栏中的多原子离子干扰需采用求干扰系数的方法进行校正;“/”表示无此项。 表 3 不同溶样方式稀土元素的分析结果
Table 3. Determination results of certified reference materials by different digestion systems.
样品编号 溶样方式 稀土元素含量(μg/g) Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu MGS1 参考值 33.6 54.9 108 13.6 55.8 11.2 3.10 9.60 1.48 7.70 1.33 3.60 0.54 3.30 0.51 半密闭法 36.1 49.3 106 13.0 53.8 10.7 3.03 9.58 1.41 7.34 1.27 3.62 0.53 3.42 0.48 高压密闭法 38.3 54.4 111 13.4 56.9 11.5 3.18 9.71 1.39 7.36 1.38 3.72 0.55 3.44 0.49 MGS2 参考值 51.9 82.0 158 17.5 63.3 11.5 1.90 10.0 1.70 9.80 1.90 5.40 0.90 5.60 0.80 半密闭法 49.3 79.6 149 16.5 59.2 11.5 1.96 10.1 1.72 9.74 1.79 5.41 0.83 5.51 0.78 高压密闭法 29.2 48.6 108 9.76 37.3 6.80 1.14 5.53 0.93 5.43 1.06 3.11 0.51 3.30 0.49 MGS3 参考值 21.5 36.8 67.6 7.30 24.1 4.20 0.80 3.80 0.70 3.90 0.77 2.20 0.35 2.20 0.34 半密闭法 19.8 32.3 58.7 6.66 23.3 3.92 0.80 3.41 0.63 3.70 0.69 2.09 0.33 2.17 0.30 高压密闭法 7.00 13.1 42.8 2.56 9.65 1.65 0.31 1.28 0.22 1.35 0.27 0.79 0.13 0.88 0.13 MFH1 参考值 51.0 80.3 164 20.7 81.3 15.4 3.60 12.5 2.00 10.0 1.80 5.00 0.77 4.70 0.68 半密闭法 49.8 82.7 164 19.7 77.4 15.0 3.47 12.4 1.89 9.96 1.77 5.04 0.77 4.65 0.65 高压密闭法 60.2 88.6 174 21.0 83.1 16.3 3.85 13.3 2.04 11.4 2.16 6.04 0.91 5.78 0.80 MFH2 参考值 68.2 114 210 23.6 86.2 15.9 2.75 13.7 2.34 13.0 2.37 6.80 1.07 7.00 1.04 半密闭法 68.2 111 205 23.1 83.5 16.0 2.76 13.3 2.31 13.3 2.46 7.38 1.15 7.73 1.09 高压密闭法 78.0 92.8 202 18.8 71.0 14.5 2.57 12.7 2.15 13.1 2.64 7.85 1.28 8.45 1.21 MFH3 参考值 52.3 110 193 21.3 75.1 13.0 2.47 11.1 1.82 10.3 1.97 5.60 0.90 5.70 0.90 半密闭法 54.1 104 189 20.8 72.3 13.3 2.52 10.7 1.84 10.3 1.91 5.75 0.89 5.81 0.82 高压密闭法 38.7 96.5 187 17.6 64.2 11.3 2.11 8.83 1.40 7.66 1.49 4.22 0.65 4.22 0.60 表 4 煤系样品中硅铝元素总量
Table 4. Total amount of silicon and aluminum elements in coal-related samples.
样品编号 煤系样品类型 Al2O3含量
(%)SiO2含量
(%)SRM1635a 煤 1.03 — MGS1 煤矸石 11.76 29.14 MGS2 煤矸石 26.10 30.53 MGS3 煤矸石 32.80 41.10 MFH1 煤飞灰 19.50 43.60 MFH2 煤飞灰 31.80 36.37 MFH3 煤飞灰 34.50 46.90 表 5 方法检出限
Table 5. Detection limits of REEs.
稀土元素 方法1 方法2 稀土元素 方法1 方法2 检出限
(μg/g)检出限
(μg/g)检出限
(μg/g)检出限
(μg/g)Y 0.02 0.05 Tb 0.01 0.02 La 0.03 0.05 Dy 0.01 0.02 Ce 0.03 0.05 Ho 0.01 0.02 Pr 0.02 0.05 Er 0.01 0.02 Nd 0.03 0.05 Tm 0.01 0.02 Sm 0.01 0.02 Yb 0.01 0.02 Eu 0.01 0.02 Lu 0.01 0.02 Gd 0.01 0.02 表 6 煤标准物质(SRM1635a)精密度和正确度分析结果
Table 6. The analytical results of precision and accuracy of coal standard sample SARM1635a.
稀土元素 测定值
(μg/g)标准值
(μg/g)相对误差
(%)RSD
(%)稀土元素 测定值
(μg/g)标准值
(μg/g)相对误差
(%)RSD
(%)Y 2.6 − − 4.24 Tb 0.08 − − 7.54 La 2.8 − − 7.05 Dy 0.45 − − 7.81 Ce 5.31 5.45±0.10 −2.57 6.57 Ho 0.09 − − 8.20 Pr 0.61 − − 8.43 Er 0.28 − − 7.61 Nd 2.38 − − 7.57 Tm 0.04 − − 9.78 Sm 0.50 0.483±0.017 3.52 8.00 Yb 0.27 − − 9.98 Eu 0.12 0.1115±0.0021 7.62 6.92 Lu 0.05 − − 6.31 Gd 0.48 − − 8.74 表 7 煤矸石和煤飞灰样品精密度和正确度分析结果
Table 7. The analytical results of precision and accuracy of coal gangue and coal fly ash samples.
稀土元素 MGS1 MGS2 测定值
(μg/g)参考值
(μg/g)相对误差
(%)RSD
(%)测定值
(μg/g)参考值
(μg/g)相对误差
(%)RSD
(%)Y 36.1 33.6±7.2 7.44 4.43 49.3 51.9±3.2 −5.01 1.93 La 49.3 54.9±3.3 −10.20 2.65 79.6 82.0±8.0 −2.93 0.10 Ce 106 108±7.5 −1.85 2.08 149 158±17 −5.70 0.32 Pr 13.0 13.6±0.5 −4.41 2.30 16.5 17.5±0.9 −5.71 0.18 Nd 53.8 55.8±3.8 −3.58 3.26 59.2 63.3±4.5 −6.48 0.15 Sm 10.7 11.2±0.32 −4.46 2.51 11.5 11.5±0.7 0.00 2.49 Eu 3.03 3.1±0.2 −2.26 2.26 1.96 1.9±0.1 3.16 0.82 Gd 9.58 9.6±0.8 −0.21 3.68 10.1 10.0±1.1 1.00 1.90 Tb 1.41 1.48±0.14 −4.73 5.20 1.72 1.7±0.2 1.18 0.40 Dy 7.34 7.7±0.8 −4.68 5.18 9.74 9.8±0.9 −0.61 0.47 Ho 1.27 1.33±0.10 −4.51 6.71 1.79 1.9±0.2 −5.79 0.20 Er 3.62 3.6±0.5 0.56 7.95 5.41 5.4±0.5 0.19 1.37 Tm 0.53 0.54±0.08 −1.85 8.25 0.83 0.9±0.1 −7.78 1.01 Yb 3.42 3.3±0.4 3.64 8.45 5.51 5.6±0.5 −1.61 0.45 Lu 0.48 0.51±0.07 −5.88 7.70 0.78 0.8±0.1 −2.50 0.91 稀土元素 MFH1 MFH3 测定值
(μg/g)参考值
(μg/g)相对误差
(%)RSD
(%)测定值
(μg/g)参考值
(μg/g)相对误差
(%)RSD
(%)Y 49.8 51.0±9.2 −2.35 2.72 54.1 52.3±6.8 3.44 0.18 La 82.7 80.3±12.0 2.99 0.94 104 109.5±8.6 −5.45 3.12 Ce 164 164±27.2 0.00 0.47 189 193±18.8 −2.07 1.26 Pr 19.7 20.7±1.4 −4.83 0.34 20.8 21.3±1.5 −2.35 0.84 Nd 77.4 81.3±2.1 −4.80 0.58 72.3 75.1±4.8 −3.73 1.80 Sm 15.0 15.4±0.8 −2.60 1.01 13.3 13.0±0.8 2.31 1.71 Eu 3.47 3.6±0.2 −3.61 1.03 2.52 2.47±0.26 2.02 0.98 Gd 12.4 12.5±0.6 −0.80 1.09 10.7 11.1±0.4 −3.60 0.26 Tb 1.89 2.0±0.2 −5.50 1.12 1.84 1.82±0.05 1.10 0.73 Dy 9.96 10.0±1.9 −0.40 1.54 10.3 10.3±1.2 0.00 0.28 Ho 1.77 1.8±0.4 −1.67 2.03 1.91 1.97±0.27 −3.05 1.44 Er 5.04 5.0±0.9 0.80 0.79 5.75 5.6±0.7 2.68 1.00 Tm 0.77 0.77±0.14 0.00 0.26 0.89 0.9±0.1 −1.11 0.33 Yb 4.65 4.7±0.9 −1.06 1.28 5.81 5.7±0.7 1.93 0.05 Lu 0.65 0.68±0.11 −4.41 1.25 0.82 0.9±0.1 −8.89 0.81 表 8 煤系样品分析结果
Table 8. The analytical results of coal-related samples.
稀土
元素M1 M2 M3 GS1 FH1 测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)Y 29.6 5.89 7.36 4.30 5.75 9.43 10.5 1.41 68.2 2.16 La 72.0 4.91 7.08 4.94 2.07 3.11 7.92 2.66 111 2.22 Ce 137.1 1.81 14.4 2.01 4.93 0.13 18.3 1.07 205 2.80 Pr 14.5 0.32 1.71 1.29 0.68 0.62 1.76 6.41 23.1 3.04 Nd 49.7 1.51 6.98 1.44 3.08 1.84 5.83 4.51 83.5 3.00 Sm 8.93 2.88 1.42 3.95 0.73 1.92 1.23 5.49 16.0 1.76 Eu 1.46 2.81 0.23 12.2 0.15 0.18 0.21 1.38 2.76 1.89 Gd 7.43 6.08 1.51 14.8 0.91 12.7 1.42 6.61 13.3 3.11 Tb 1.21 4.95 0.22 5.81 0.14 5.60 0.30 1.00 2.31 4.25 Dy 6.60 5.68 1.42 2.00 0.95 1.65 2.17 2.63 13.3 3.98 Ho 1.23 5.05 0.29 1.15 0.20 0.76 0.44 0.88 2.46 3.55 Er 3.39 4.40 0.91 2.11 0.60 0.94 1.30 3.38 7.38 3.72 Tm 0.48 5.92 0.14 2.74 0.09 2.25 0.19 0.03 1.15 4.57 Yb 3.18 5.07 0.91 2.40 0.58 1.11 1.25 0.74 7.73 4.56 Lu 0.45 3.53 0.13 6.63 0.08 0.42 0.17 5.05 1.09 4.55 -
[1] 秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1−38.
Qin S J, Xu F, Cui L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology, 2022, 50(3): 1−38.
[2] 陈磊, 邵培, 熊武候, 等. 新疆准东煤田中侏罗统煤系镓元素的分布特征及赋存机理探讨[J]. 地学前缘, 2018, 25(4): 76−85. doi: 10.13745/j.esf.yx.2017-12-23
Chen L, Shao P, Xiong W H, et al. Discussion on distribution and occurrence mechanism of gallium in the middle Jurassic coal-bearing strata of the Eastern Junggar Coalfield, Xinjiang[J]. Earth Science Frontiers, 2018, 25(4): 76−85. doi: 10.13745/j.esf.yx.2017-12-23
[3] 魏强, 代世峰. 中国煤型锗矿床中的关键金属和有害元素: 赋存特征与富集成因[J]. 煤炭学报, 2020, 45(1): 296−303.
Wei Q, Dai S F. Critical metals and hazardous elements in the coal-hosted germanium ore deposits of China: Occurrence characteristics and enrichment causes[J]. Journal of China Coal Society, 2020, 45(1): 296−303.
[4] Ren W Y, Cao Q Y, Yang L, et al. Uranium in Chinese coals: Concentration, spatial distribution, and modes of occurrence[J]. Journal of Environmental Radioactivity, 2022, 246: 106848. doi: 10.1016/j.jenvrad.2022.106848
[5] Wang W F, Sang S X, Hao W D, et al. A cut-off grade for gold and gallium in coal[J]. Fuel, 2015, 147: 62−66. doi: 10.1016/j.fuel.2015.01.066
[6] Hao H D, Li J Z, Wang J X, et al. Distribution characteristics and enrichment model of valuable elements in coal: An example from the Nangou Mine, Ningwu Coalfield, Northern China[J]. Ore Geology Reviews, 2023, 160: 105599. doi: 10.1016/j.oregeorev.2023.105599
[7] Di S B, Dai S F, Nechaev V P, et al. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao surface mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions[J]. International Journal of Coal Geology, 2023, 273: 104262. doi: 10.1016/j.coal.2023.104262
[8] Wang Z, Dai S F, Zou J H, et al. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction[J]. International Journal of Coal Geology, 2019, 203: 1−14. doi: 10.1016/j.coal.2019.01.001
[9] Zou J H, Chen H Y, Zhao L, et al. Enrichment of critical elements (Li-Ga-Nb-Ta-REE-Y) in the coals and host rocks from the Daping Mine, Yudongnan Coalfield, SW China[J]. Ore Geology Reviews, 2023, 152: 105245. doi: 10.1016/j.oregeorev.2022.105245
[10] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669.
Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.
[11] Wang W W, Peng Z K, Guo C L, et al. Exploring rare earth mineral recovery through characterization of Riebeckite type ore in Bayan Obo[J]. Heliyon, 2023, 9(3): 14060. doi: 10.1016/j.heliyon.2023.e14060
[12] Hower J C, Eble C F, Backus J S, et al. Aspects of rare earth element enrichment in Central Appalachian coals[J]. Applied Geochemistry, 2020, 120: 104676. doi: 10.1016/j.apgeochem.2020.104676
[13] 钟霖, 梁敏. 从出口税收政策的变化探讨我国稀土资源可持续发展的策略[J]. 有色金属科学与工程, 2012, 3(4): 100−107. doi: 10.13264/j.cnki.ysjskx.2012.04.009
Zhong L, Liang M. The sustainable development strategy of China’s REE resources from the perspective of rare earth export taxation policy change[J]. Nonferrous Metals Science and Engineering, 2012, 3(4): 100−107. doi: 10.13264/j.cnki.ysjskx.2012.04.009
[14] Bragg L J, Oman J K, Tewalt S J, et al. U. S. Geological Survey Open-file Report[R]. 1998: 97-134.
[15] 雒洋冰. 川东川南晚二叠世煤及凝灰岩中微量元素地球化学研究[D]. 北京: 中国矿业大学(北京), 2014: 21-39.
Luo Y B. Geochemical study of trace elements in late Permian coal and tuff in Eastern and Southern Sichuan[D]. Beijing: China University of Mining and Technology (Beijing), 2014: 21-39.
[16] Seredin V V, Dai S F, Sun Y Z, et al. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies[J]. Applied Geochemistry, 2013, 31: 1−11. doi: 10.1016/j.apgeochem.2013.01.009
[17] Bagdonas D A, Enriquez A J, Coddington K A, et al. Rare earth element resource evaluation of coal byproducts: A case study from the Powder River Basin, Wyoming[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112148. doi: 10.1016/j.rser.2022.112148
[18] 邹建华, 王慧, 陈虹雨, 等. 粉煤灰中稀土元素提取利用研究进展[J]. 稀土, 2022, 43(4): 11−19.
Zou J H, Wang H, Chen H Y, et al. Research progress of rare earth elements recovery from coal fly ash[J]. Chinese Rare Earths, 2022, 43(4): 11−19.
[19] 王建新, 李晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3834−3841.
Wang J X, Li J, Zhao S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3834−3841.
[20] 周君龙, 岳大磊, 唐志锟, 等. 煤及煤灰中微量元素检测前处理方法研究综述[J]. 煤化工, 2021, 49(5): 86−90.
Zhou J L, Yue D L, Tang Z K, et al. Summary of research on pretreatment method for detection of trace element in coal and coal ash[J]. Coal Chemical Industry, 2021, 49(5): 86−90.
[21] 杨金辉, 张小毅. 电感耦合等离子体质谱法测定煤中11种元素[J]. 冶金分析, 2013, 33(9): 8−11.
Yang J H, Zhang X Y. Determination of eleven elements in coal by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2013, 33(9): 8−11.
[22] 沈健, 赵雨薇, 王兵, 等. 微波消解-高分辨电感耦合等离子体质谱(HR-ICP-MS)法测定煤炭中35种痕量金属元素[J]. 中国无机分析化学, 2022, 12(2): 26−34.
Shen J, Zhao Y W, Wang B, et al. Determination of 35 trace metal elements in coal by high resolution inductively coupled plasma mass spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 26−34.
[23] 朱健, 马程程, 赵磊, 等. 高压密闭消解-电感耦合等离子体质谱法测定煤中17种金属元素[J]. 理化检验(化学分册), 2014, 50(8): 960−963.
Zhu J, Ma C C, Zhao L, et al. ICP-MS determination of 17 metal elements in coal with high-pressure closed digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(8): 960−963.
[24] 马亮帮, 张大勇, 腾格尔, 等. 高压密闭消解-电感耦合等离子体质谱(ICP-MS)法测定煤中稀土元素[J]. 中国无机分析化学, 2019, 9(4): 27−30.
Ma L B, Zhang D Y, Tenger, et al. Determination of rare earth elements in coal by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 27−30.
[25] 何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8−12.
He H L, Li B, Han L R, et al. Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICP-MS[J]. Analytical Laboratory, 2002, 21(5): 8−12.
[26] 宋兴, 解锡超, 屠文涛, 等. 高压密闭消解-电感耦合等离子体质谱法测定煤中锂[J]. 化学试剂, 2021, 43(12): 1707−1710.
Song X, Xie X C, Tu W T, et al. Determination of lithium in coal by high-pressure closed digestion-inductively coupled plasma mass spectrometry[J]. Chemical Reagents, 2021, 43(12): 1707−1710.
[27] 张浩宇, 付彪, 王娇, 等. 电感耦合等离子体串联质谱法测定煤灰中痕量稀土元素[J]. 光谱学与光谱分析, 2023, 43(7): 2074−2081.
Zhang H Y, Fu B, Wang J, et al. Determination of trace rare earth elements in coal ash by inductively coupled plasma tandem mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2074−2081.
[28] 孙孟华, 金倩, 陈庆芝, 等. 半密闭酸溶-电感耦合等离子体质谱(ICP-MS)法测定化探样品中的铬、镍、铜、锌、镉、铅等6种重金属[J]. 中国无机分析化学, 2023, 13(4): 318−325.
Sun M H, Jin Q, Chen Q Z, et al. Determination of chromium, nickel, copper, zinc, cadmium, lead in geological samples by inductively coupled plasma mass spectrometry (ICP-MS) with semi-closed acid solution[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(4): 318−325.
[29] 兰明国, 陆迁树, 张先昌. 溶样方法对电感耦合等离子体质谱法测定岩石和土壤中稀土元素的影响[J]. 冶金分析, 2018, 38(6): 31−38.
Lan M G, Lu Q S, Zhang X C. Influence of sample dissolution method on determination of rare earth elements in rock and soil by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 31−38.
[30] 孙梦荷, 苏春风, 方迪, 等. 电感耦合等离子体质谱(ICP-MS)法在稀土分析中的应用进展[J]. 中国无机分析化学, 2023, 13(9): 939−949.
Sun M H, Su C F, Fang D, et al. Application progress of inductively coupled plasma mass spectrometry (ICP-MS) in rare earth analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(9): 939−949.
[31] 王冠, 李华玲, 任静, 等. 高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究[J]. 岩矿测试, 2013, 32(4): 561−567.
Wang G, Li H L, Ren J, et al. Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICP-MS[J]. Rock and Mineral Analysis, 2013, 32(4): 561−567.
[32] 冯先进, 马丽. 电感耦合等离子体质谱(ICP-MS)法在我国矿物中“四稀”元素检测的应用[J]. 中国无机分析化学, 2023, 13(8): 802−812.
Feng X J, Ma L. Application of inductively coupled plasma mass spectrometry (ICP-MS) for the detection of rare, rare earth, rare scattering and precious elements in minerals in China[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 802−812.
[33] Dai S F, Finkelman R B, French D, et al. Modes of occurrence of elements in coal: A critical evaluation[J]. Earth-Science Reviews, 2021, 222: 103815. doi: 10.1016/j.earscirev.2021.103815
[34] Seredin V V, Dai S F. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94: 67−93. doi: 10.1016/j.coal.2011.11.001
[35] Dai S F, Yan X Y, Ward C R, et al. Valuable elements in Chinese coals: A review[J]. International Geology Review, 2018, 60: 590−620. doi: 10.1080/00206814.2016.1197802
[36] Shao L Y, Jones T, Gayer R, et al. Petrology and geochemistry of the high-sulphur coals from the upper Permian carbonate coal measures in the Heshan Coalfield, Southern China[J]. International Journal of Coal Geology, 2003, 55: 1−26. doi: 10.1016/S0166-5162(03)00031-4
[37] 杨小丽, 李小丹, 邹棣华. 溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金分析, 2016, 36(7): 56−62.
Yang X L, Li X D, Zou L H. Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 56−62.
[38] 代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
Dai S F, Zhao L, Wei Q, et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
-