天然气水合物开采数值模拟中基于mVIEW的水平井井眼轨迹建模

万庭辉, 李占钊, AVISJohn, 王静丽, 陆程, 马超, 李柯良. 天然气水合物开采数值模拟中基于mVIEW的水平井井眼轨迹建模[J]. 海洋地质前沿, 2020, 36(8): 74-80. doi: 10.16028/j.1009-2722.2019.190
引用本文: 万庭辉, 李占钊, AVISJohn, 王静丽, 陆程, 马超, 李柯良. 天然气水合物开采数值模拟中基于mVIEW的水平井井眼轨迹建模[J]. 海洋地质前沿, 2020, 36(8): 74-80. doi: 10.16028/j.1009-2722.2019.190
WAN Tinghui, LI Zhanzhao, AVIS John, WANG Jingli, LU Cheng, MA Chao, LI Keliang. HORIZONTAL WELLBORE TRAJECTORY MODELING BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE PRODUCTION[J]. Marine Geology Frontiers, 2020, 36(8): 74-80. doi: 10.16028/j.1009-2722.2019.190
Citation: WAN Tinghui, LI Zhanzhao, AVIS John, WANG Jingli, LU Cheng, MA Chao, LI Keliang. HORIZONTAL WELLBORE TRAJECTORY MODELING BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE PRODUCTION[J]. Marine Geology Frontiers, 2020, 36(8): 74-80. doi: 10.16028/j.1009-2722.2019.190

天然气水合物开采数值模拟中基于mVIEW的水平井井眼轨迹建模

  • 基金项目: 广东省促进经济高质量发展专项资金海洋经济发展项目(GDOE(2019)A39)
详细信息
    作者简介: 万庭辉(1990—),男,在读硕士,工程师,主要从事天然气水合物数值模拟方面的研究工作.E-mail:825848651@qq.com
    通讯作者: 李占钊(1987—),男,硕士,助理工程师,主要从事天然气水合物数值模拟方面的研究工作. E-mail:490565409@qq.com
  • 中图分类号: P618.13

HORIZONTAL WELLBORE TRAJECTORY MODELING BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE PRODUCTION

More Information
  • 针对使用TOUGH+HYDRATE模拟水平井降压开采天然气水合物过程中井眼轨迹的精细刻画给出解决方案,利用mVIEW进行水平井井眼轨迹建模,并进行了模型验证,弥补了模拟器在复杂建模方面的不足,提高模拟器使用效率。由于含井眼轨迹的水平开采模型生产井段在Z方向穿透层位更接近真实的生产情况,因此,含井眼轨迹的水平井开采模型能更好地指导实际生产。

  • 加载中
  • 图 1  水平井开采模型示意图

    Figure 1. 

    图 2  mVIEW软件界面

    Figure 2. 

    图 3  Create 3D Layer for Single Well Geometry模块

    Figure 3. 

    图 4  Connect 3D Well Geometry to Geology模块

    Figure 4. 

    图 5  地质体网格

    Figure 5. 

    图 6  井眼轨迹网格及其连接

    Figure 6. 

    图 7  井眼轨迹网格与地质体网格的连接(XY平面)

    Figure 7. 

    图 8  井眼轨迹网格与地质体网格的连接(YZ平面)

    Figure 8. 

    图 9  设置岩性

    Figure 9. 

    图 10  模型网格

    Figure 10. 

    图 11  注水测试结果

    Figure 11. 

    图 12  水平井开采理想模型A和含井眼轨迹水平井开采模型B

    Figure 12. 

    图 13  TECPLOTData模块

    Figure 13. 

    图 14  温度和压力场图

    Figure 14. 

  • [1]

    Sloan E D, Koh C A. Clathrate hydrates of natural gases:3rd[M].Speight J G. Laramie Wyoming, 2008.

    [2]

    Milkov A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J]. Earth-Science Reviews,2004,66(3/4):183-197. doi: 10.1016/j.earscirev.2003.11.002

    [3]

    Klauda J B,Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy Fuels,2005,19(2):459-470. doi: 10.1021/ef049798o

    [4]

    Lee S Y,Holder G D. Methane hydrate potential as a future energy source[J]. Fuel Processing Technology,2001,71(I-3):181-186.

    [5]

    Collett T S. Gas hydrate as a future energy resource[J]. Geotimes,2004,49(11):24-27.

    [6]

    Reagan M T,Kowalsky M B,Moridis G J,et al. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost[J]. Physics Letters A,2010,90:33-36.

    [7]

    Moridis G J,Reagan M T. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost:1. Concepts,system description,and the production base case[J]. Journal of Petroleum Science and Engineering,2011a,76:194-204. doi: 10.1016/j.petrol.2010.11.023

    [8]

    Li X,Xu C,Zhang Y,et al. Investigation into gas production from natural gas hydrate:A review[J]. Applied Energy,2016,172:286-322. doi: 10.1016/j.apenergy.2016.03.101

    [9]

    Moridis G J, Kowalsky M B, Pruess K. TOUGH+HYDRATE v1.1 user’s manual: A code for the simulation of system behavior in hydrate-bearing geologic media[M]. Berkeley, California, 2009.

    [10]

    Moridis G J. Numerical studies of gas production from Class 2 and Class 3 hydrate accumulations at the Mallik Site,Mackenzie Delta,Canada[J]. SPE Reservoir Evaluation and Engineering,2004,7(3):175-183. doi: 10.2118/88039-PA

    [11]

    Moridis G J,Collett T S,Dallimore S R,et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site,Mackenzie Delta,Canada[J]. Journal of Petroleum Science and Engineering,2004,43(3/4):219-328. doi: 10.1016/j.petrol.2004.02.015

    [12]

    苏 正,吴能友,张可霓. 南海北部陆坡神狐天然气水合物开发潜力[J]. 海洋地质前沿,2011,27(6):16-23.

    [13]

    苏 正,何 勇,吴能友. 南海北部神狐海域天然气水合物热激发开采潜力的数值模拟分析[J]. 热带海洋学报,2012,31(5):74-82. doi: 10.3969/j.issn.1009-5470.2012.05.011

    [14]

    李 刚,李小森,Zhang K N,等. 水平井开采南海神狐海域天然气水合物数值模拟[J]. 地球物理学报,2011,54(9):2325-2337. doi: 10.3969/j.issn.0001-5733.2011.09.016

    [15]

    李小森,陈 琦,李 刚,等. 海底水合物矿藏降压开采与甲烷气体扩散过程的数值模拟[J]. 现代地质,2010,24(3):598-606. doi: 10.3969/j.issn.1000-8527.2010.03.026

    [16]

    庞维新,李清平,孙福街,等. 天然气水合物藏开采数值模拟研究[J]. 中国煤炭地质,2015,27(8):31-37. doi: 10.3969/j.issn.1674-1803.2015.08.07

    [17]

    郭朝斌,张可霓,凌璐璐. 天然气水合物数值模拟方法及其应用[J]. 上海国土资源,2013,34(2):71-79. doi: 10.3969/j.issn.2095-1329.2013.02.017

    [18]

    Feng J C,Li X S,Li G,et al. Numerical investigation of hydrate dissociation performance in the South China Sea with different horizontal well configurations[J]. Energies,2014,7:4813-4814. doi: 10.3390/en7084813

    [19]

    Li X S,Yang B,Li G,et al. Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain Permafrost[J]. Industrial & Engineering Chemistry Research,2012,51:4424-4432.

    [20]

    Sun J X,Ning F L,Zhang L,et al. Numerical simulation on gas production from hydrate reservoir at the 1st offshore test site in the eastern Nankai Trough[J]. Journal of Natural Gas Science and Engineering,2016(30):64-76.

  • 加载中

(14)

计量
  • 文章访问数:  1532
  • PDF下载数:  51
  • 施引文献:  0
出版历程
收稿日期:  2019-10-08
刊出日期:  2020-08-28

目录