琼东南盆地深水区上新世以来天然气水合物稳定域时空迁移及其分布特征

江定川, 刘睿, 赵晓明, 方小宇, 葛家旺, 陆江, 姚哲, 朱继田, 宋鹏. 琼东南盆地深水区上新世以来天然气水合物稳定域时空迁移及其分布特征[J]. 海洋地质前沿, 2021, 37(7): 43-51. doi: 10.16028/j.1009-2722.2021.094
引用本文: 江定川, 刘睿, 赵晓明, 方小宇, 葛家旺, 陆江, 姚哲, 朱继田, 宋鹏. 琼东南盆地深水区上新世以来天然气水合物稳定域时空迁移及其分布特征[J]. 海洋地质前沿, 2021, 37(7): 43-51. doi: 10.16028/j.1009-2722.2021.094
JIANG Dingchuan, LIU Rui, ZHAO Xiaoming, FANG Xiaoyu, GE Jiawang, LU Jiang, YAO Zhe, ZHU Jitian, SONG Peng. DYNAMIC MIGRATION OF GAS HYDRATE STABILITY ZONE IN THE DEEP WATER AREAS OF THE QIONGDONGNAN BASIN SINCE PLIOCENE AND ITS DISTRIBUTION PATTERN[J]. Marine Geology Frontiers, 2021, 37(7): 43-51. doi: 10.16028/j.1009-2722.2021.094
Citation: JIANG Dingchuan, LIU Rui, ZHAO Xiaoming, FANG Xiaoyu, GE Jiawang, LU Jiang, YAO Zhe, ZHU Jitian, SONG Peng. DYNAMIC MIGRATION OF GAS HYDRATE STABILITY ZONE IN THE DEEP WATER AREAS OF THE QIONGDONGNAN BASIN SINCE PLIOCENE AND ITS DISTRIBUTION PATTERN[J]. Marine Geology Frontiers, 2021, 37(7): 43-51. doi: 10.16028/j.1009-2722.2021.094

琼东南盆地深水区上新世以来天然气水合物稳定域时空迁移及其分布特征

  • 基金项目: 南方海洋科学与工程广东省实验室(湛江)“南海水合物富集规律及固态流化开采机理研究(一期)”(ZJW-2019-03);国家自然科学基金(42072184,41702157)
详细信息
    作者简介: 江定川(1997—),男,在读硕士,矿产普查与勘探专业. E-mail:1924818601@qq.com
    通讯作者: 刘睿(1988—),男,博士,副研究员,主要从事石油与天然气地质学教学与科研工作. E-mail:liurui@outlook.com
  • 中图分类号: P744.4;P618.13

DYNAMIC MIGRATION OF GAS HYDRATE STABILITY ZONE IN THE DEEP WATER AREAS OF THE QIONGDONGNAN BASIN SINCE PLIOCENE AND ITS DISTRIBUTION PATTERN

More Information
  • 琼东南盆地深水区天然气水合物富集条件优越,具有巨大的勘探开发前景。基于近年来新获取的海洋地质地球物理关键参数,反演了琼东南盆地深水区上新世(约5 Ma)以来的天然气水合物稳定域迁移过程。研究表明:琼东南盆地现今天然气水合物稳定域主要存在于水深>600 m的海底,约在水深1 800~2 400 m处水合物稳定域厚度达到最大值,约190 m;冰期海平面下降导致水合物稳定域向深海平原迁移,而陆坡-深海平原转换带的水合物稳定域厚度则相对于现今减薄约80 m;岩浆热事件导致深海平原水合物稳定域厚度减薄约50 m,天然气水合物随之分解后释放大量气体导致多边形断层形成。

  • 加载中
  • 图 1  琼东南盆地构造区划与典型凹陷结构地震剖面

    Figure 1. 

    图 2  南海西北部沉积浅层(<100 mbsf)实测地温梯度与浅层(<100 mbsf)、深层(>1 000 mbsf)地温梯度差异机制示意图

    Figure 2. 

    图 3  琼东南盆地水合物钻井样品天然气组分[13, 15]

    Figure 3. 

    图 4  琼东南盆地海底温压条件及天然气水合物相边界

    Figure 4. 

    图 5  琼东南盆地深水区地层温度梯度与天然气水合物稳定域(GHSZ)厚度

    Figure 5. 

    图 6  琼东南盆地地震剖面中天然气水合物稳定域(GHSZ)与似海底反射(BSR)分布

    Figure 6. 

    图 7  南海北部近500 ka以来的表层海水温度和海平面相对变化

    Figure 7. 

    图 8  冰期与热事件作用下的天然气水合物稳定域厚度变化

    Figure 8. 

    图 9  约5 Ma时期陆坡上倾方向的陆架边缘三角洲前缘滑塌与深海平原区的多边形断层

    Figure 9. 

  • [1]

    MILKOV A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J]. Earth-Science Reviews,2004,66(3):183-197.

    [2]

    KLAUDA J B,SANDLER S I. Global distribution of methane hydrate in ocean sediment[J]. Energy and Fuels,2005,19(2):459-470. doi: 10.1021/ef049798o

    [3]

    沙志彬,许振强,王平康,等. 世界天然气水合物研究发展对我国加快推进其产业化的启示[J]. 海洋地质前沿,2019,35(8):1-10.

    [4]

    MACKAY M E,JARRARD R D,WESTBROOK G K,et al. Origin of bottom-simulating reflectors:Geophysical evidence from the Cascadia accretionary prism[J]. Geology,1994,22(5):459-462. doi: 10.1130/0091-7613(1994)022<0459:OOBSRG>2.3.CO;2

    [5]

    TSUJI Y, NAMIKAWA T, FUJII M, et al. Methane-hydrate occurrence and distribution in the Eastern Nankai Trough, Japan: findings of the Tokai-oki to Kumano-nada methane-hydrate drilling program[C]//COLLETT T, JOHNSON A, BOSWELL R. Natural gas hydrates: energy resource potential and associated geologic hazards. AAPG Memoir 89, 2009: 228-246.

    [6]

    MAJUMDAR U,COOK A E,SHEDD W,et al. The connection between natural gas hydrate and bottom-simulating reflectors[J]. Geophysical Research Letters,2016,43(13):7044-7051. doi: 10.1002/2016GL069443

    [7]

    孙运宝,赵铁虎,秦轲. MTD引起的水合物解释陷阱:以神狐海域为例[J]. 海洋地质前沿,2015,31(6):36-43.

    [8]

    杨睿,吴能友,白杰,等. 南海北部无明显BSR地区天然气水合物识别研究[J]. 地球物理学进展,2013,28(2):1033-1040. doi: 10.6038/pg20130257

    [9]

    MASLIN M,OWEN M,BETTS R,et al. Gas hydrates:past and future geohazard?[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2010,368(1919):2369-2393. doi: 10.1098/rsta.2010.0065

    [10]

    陈多福,李绪宣,夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报,2004,47(3):483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018

    [11]

    刘杰,杨睿,邬黛黛,等. 琼东南盆地华光凹陷天然气水合物稳定带厚度的影响因素[J]. 海洋学报,2019,41(8):13-25.

    [12]

    朱继田,邓勇,郭明刚,等. 琼东南盆地盆底平原区天然气水合物成矿条件及成藏模式[J]. 中国海上油气,2020,32(3):10-19.

    [13]

    LIANG J Q,ZHANG W,LU J A,et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea:insights from site GMGS5-W9-2018[J]. Marine Geology,2019,418(12):106042.

    [14]

    DENG W,LIANG J Q,ZHANG W,et al. Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan Basin,northern south China sea[J]. Marine and Petroleum Geology,2021,124(2):104810.

    [15]

    YE J L,WEI J G,LIANG J Q,et al. Complex gas hydrate system in a gas chimney,South China Sea[J]. Marine and Petroleum Geology,2019,104(6):29-39.

    [16]

    张伟,梁金强,陆敬安,等. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业,2020,40(8):90-99. doi: 10.3787/j.issn.1000-0976.2020.08.007

    [17]

    刘杰,杨睿,张金华,等. 琼东南盆地华光凹陷天然气水合物成藏条件及有利区带预测[J]. 海洋地质与第四纪地质,2019,39(1):134-142.

    [18]

    ZHAO Z X,SUN Z,WANG Z F,et al. The mechanics of continental extension in Qiongdongnan Basin,northern South China Sea[J]. Marine Geophysical Research,2015,36(2):197-210.

    [19]

    DICKENS G R,QUINBY-HUNT M S. Methane hydrate stability in seawater[J]. Geophysical Research Letters,1994,21(19):2115-2118. doi: 10.1029/94GL01858

    [20]

    SLOAN E D, KOH C A. Clathrate Hydrates of Natural Gases[M]. 3rd edn. CRC Press: Boca Raton, FL, USA, 2008.

    [21]

    YANG X Q,SHI X B,ZHAO J F,et al. Bottom water temperature measurements in the South China Sea,eastern Indian Ocean and western Pacific Ocean[J]. Journal of Tropical Oceanography,2018,37(5):86-97.

    [22]

    YUAN Y S,ZHU W L,MI L J,et al. "Uniform geothermal gradient" and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea[J]. Marine and Petroleum Geology,2009,26(7):1152-1162. doi: 10.1016/j.marpetgeo.2008.08.008

    [23]

    徐行,施小斌,罗贤虎,等. 南海西沙海槽地区的海底热流测量[J]. 海洋地质与第四纪地质,2006,26(4):51-58.

    [24]

    徐行,施小斌,罗贤虎,等. 南海北部海底地热测量的数据处理方法[J]. 现代地质,2006,20(3):457-464. doi: 10.3969/j.issn.1000-8527.2006.03.014

    [25]

    徐行,陆敬安,罗贤虎,等. 南海北部海底热流测量及分析[J]. 地球物理学进展,2005,20(2):562-565. doi: 10.3969/j.issn.1004-2903.2005.02.057

    [26]

    李亚敏,罗贤虎,徐行,等. 南海北部陆坡深水区的海底原位热流测量[J]. 地球物理学报,2010,53(9):2161-2170. doi: 10.3969/j.issn.0001-5733.2010.09.016

    [27]

    NISSEN S S,DENNIS E H,YAO B,et al. Gravity,heat flow,and seismic constraints on the processes of crustal extension:northern margin of the South China Sea[J]. Journal of Geophysical Research:Solid Earth,1995,100(B11):22447-22483. doi: 10.1029/95JB01868

    [28]

    甘军,吴迪,张迎朝,等. 琼东南盆地现今地层温度分布特征及油气地质意义[J]. 高校地质学报,2019,25(6):952-960.

    [29]

    施小斌,王振峰,蒋海燕,等. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征[J]. 地球物理学报,2015,58(3):939-952. doi: 10.6038/cjg20150320

    [30]

    徐行,李亚敏,罗贤虎,等. 南海北部陆坡水合物勘探区典型站位不同类型热流对比[J]. 地球物理学报,2012,55(3):998-1006. doi: 10.6038/j.issn.0001-5733.2012.03.030

    [31]

    OSBORNE M J,SWARBRICK R E. Mechanisms for generating overpressure in sedimentary basins:a reevaluation[J]. AAPG Bulletin,1997,81(6):1023-1041.

    [32]

    BJøRLYKKE K. Relationships between depositional environments,burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology,2014,301(3):1-14.

    [33]

    DAVIES R J,GOULTY N R,MEADOWS D. Fluid flow due to the advance of basin-scale silica reaction zones[J]. Geological Society of America Bulletin,2008,120(1/2):195-206.

    [34]

    赵绍华,刘志飞,陈全,等. 南海北部末次冰期以来深水沉积物组成及其堆积速率的时空变化特征[J]. 中国科学:地球科学,2017,47(8):958-971.

    [35]

    WANG Y,LIU S,HAO F,et al. Geothermal investigation of the thickness of gas hydrate stability zone in the north continental margin of the South China Sea[J]. Acta Oceanologica Sinica,2017,36(4):72-79. doi: 10.1007/s13131-017-1014-2

    [36]

    ZHANG W,LIANG J Q,SU P B,et al. Distribution and characteristics of mud diapirs,gas chimneys,and bottom simulating reflectors associated with hydrocarbon migration and gas hydrate accumulation in the Qiongdongnan Basin,northern slope of the South China Sea[J]. Geological Journal,2019,54(6):3556-3573. doi: 10.1002/gj.3351

    [37]

    龚跃华,杨胜雄,王宏斌,等. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报(地球科学版),2018,48(4):1030-1042.

    [38]

    贺子丁,刘志飞,李建如,等. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展,2012,27(3):327-336.

    [39]

    WARLBROECK C,LABEYRIE L,MICHEL E,et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews,2002,21(1):295-305.

    [40]

    JIA G D, CHEN F J, PENG P A. Sea surface temperature differences between the western equatorial Pacific and northern South China Sea since the Pliocene and their paleoclimatic implications. Geophysical Research Letters, 2008, 35(18): L18609.

    [41]

    金春爽,汪集旸,卢振权. 南海西沙海槽6 Ma以来天然气水合物稳定带演化初探[J]. 矿床地质,2011,30(1):156-162. doi: 10.3969/j.issn.0258-7106.2011.01.013

    [42]

    WANG P, LI Q, LI C F. Geology of the China Seas[M]. Oxford, UK: Elsevier, 2014: 469-570.

    [43]

    WANG Z,SHI X B,YANG J,et al. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin[J]. Acta Oceanologica Sinica,2014,33(12):107-117. doi: 10.1007/s13131-014-0580-9

  • 加载中

(9)

计量
  • 文章访问数:  898
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2021-04-11
刊出日期:  2021-07-28

目录