-
摘要:
为海洋生态保护和海岸工程建设等工作提供参考,基于Mike21模型水动力学(HD)模块,得到最新岸线形态下芝罘湾的潮流场,涨、落潮历时不均,落急潮流流速大于涨急潮流;东北岸流速最大,向西南靠岸渐小;湾北涨、落潮流向相反,湾中、南部流向在涨急时刻为SW向,落急时刻由南呈NW向向北顺时针逐渐转为NE向。计算了15个潮周期的欧拉余流场,余流流向除湾南沿岸局部区域沿岸向南外,整体为中心在湾东北的顺时针余环流,余流流速整体较小,大部分区域不超过0.06 m/s。芝罘湾内等距离释放16个自由粒子,据粒子运移轨迹得知:湾以北外海的物质不易向湾内输运,湾内自由粒子最终均运移出湾外,湾内无聚集,表明芝罘湾的水动力情况利于物质向外输运;担子岛以北的粒子向东输出湾内后,绕开担子岛等岛屿输运至东南外海;担子岛以南的粒子经过在湾内回旋振荡,以“∞”型轨迹最终南下。
Abstract:To provide a reference for marine ecological protection and coastal engineering construction, the tidal field of Zhifu Bay of Yantai, Shandong, was constructed using the Mike21 HD model and particle tracking under the newest shoreline pattern. Result shows that the duration of rising and falling tides is uneven, and the tidal current velocity of the maximum ebb is greater than that of the maximum flood. The velocity on the northeastern bank is the largest, and decreases gradually towards the southwestern bank. In the north of the bay, the flow direction is opposite. In the middle and south of the bay, the flow direction is SW at the moment of flood and gradually turns from south to NW then turns clockwise to NE at the moment of ebb. The Euler residual flow field of 15 tidal cycles was calculated. The residual flow direction is a clockwise residual circulation centered in the northeast of the bay except for some areas towards the south coast. The residual flow velocity is slow on the whole, less than 0.06 m/s in most areas. Sixteen free particles were released equidistantly. The particle migration trajectories show that materials in the north of the bay was hard to move into the bay, and the free particles in the bay eventually migrated out of the bay. There was no aggregation of particles in the bay, indicating that the hydrodynamic condition of Zhifu Bay was conducive to moving materials out of the bay. The particles to the north of Danzi Island were transported eastward to the bay and then bypassed Danzi Island and other islands to the open sea to the southeast. The particles to the south of Danzi Island whirled and oscillated in the bay, and finally moved southward in a ∞-shaped trajectory.
-
Key words:
- Mike21 /
- Zhifu Bay /
- hydrodynamic environment /
- tidal residual current /
- particle tracking
-
图 10 小潮期开始16 d后的浓度分布[9]
Figure 10.
-
[1] 徐飞. 中国八成近海生态呈亚健康[J]. 生态经济,2015,31(8):10-13. doi: 10.3969/j.issn.1671-4407.2015.08.003
[2] DAI Z F, ZHANG H B, ZHOU Q, et al. Occurrence of microplastics in the water column and sediment in an inland sea affected by intensive anthropogenic activities[J]. Environmental Pollution, 2018, 242(B): 1557-1565.
[3] 张善发,王茜,关淳雅,等. 2001—2017年中国近海水域赤潮发生规律及其影响因素[J]. 北京大学学报(自然科学版),2020,56(6):1129-1140.
[4] 王启栋,宋金明,袁华茂,等. 基于“双核”新框架的烟台近岸海洋环境健康综合评价[J]. 应用生态学报,2021,32(11):4068-4076. doi: 10.13287/j.1001-9332.202111.037
[5] 陈宗镛, 刁焕祥, 孙湘平. 山东省志海洋志[M]. 北京: 海洋出版社, 1993.
[6] 邹春霞. 芝罘湾海港路共筑中心商业圈[N]. 烟台日报, 2011-02-21(5).
[7] 王璐,夏瑞,陈焰,等. 围填海对芝罘湾生态环境的影响[J]. 环境科学研究,2021,34(2):389-398. doi: 10.13198/j.issn.1001-6929.2020.11.26
[8] 王璐,陈焰,张鲁骏,等. 围填海对芝罘湾潮流场和纳潮量的影响研究[J]. 海洋湖沼通报,2021,43(2):32-39. doi: 10.13984/j.cnki.cn37-1141.2021.02.005
[9] 朱金龙,徐艳东,朱淑香,等. 岸线变迁对芝罘湾海域水交换的影响研究[J]. 海洋环境科学,2020,39(1):145-152. doi: 10.12111/j.mes20200121
[10] 汤世凯,于剑峰,李金鹏,等. 烟台芝罘湾底质沉积物粒度特征和沉积动力环境研究[J]. 山东国土资源,2020(1):22-28.
[11] 赵迎春,张瑞安. 芝罘湾港区泥沙与海流特征[J]. 海洋通报,1990(1):7-16.
[12] 朱金龙,朱淑香,魏潇,等. 围填海影响下的芝罘湾水动力变化的数值研究[J]. 海洋湖沼通报,2020,42(6):61-71. doi: 10.13984/j.cnki.cn37-1141.2020.06.008
[13] 刘鑫仓,刘艳玲,迟万清,等. 渤海湾潮致余流数值模拟研究[J]. 海岸工程,2019,38(3):224-231.
[14] 姚兰芳. 烟台芝罘湾流场特征的分析[J]. 黄渤海海洋,1991(3):43-49.
[15] 杜逢超,徐艳东,于宁,等. 近40年芝罘湾岸线时空演变及围填海活动评价[J]. 海洋科学,2018,42(4):28-35. doi: 10.11759/hykx20170515002
[16] 余晓玲. 芝罘湾近期沉积物重金属污染记录与海洋环境变化[D]. 青岛: 中国海洋大学, 2005.
[17] 孙贵芹,徐艳东,林蕾,等. 基于遥感和GIS的烟台芝罘湾海岸线变迁研究[J]. 海洋科学进展,2020,38(1):140-152. doi: 10.3969/j.issn.1671-6647.2020.01.015
[18] WANG Z H,LU X X,ZHANG K. Distribution and contamination of metals and biogenic elements in sediments from Zhifu Bay of the Yellow Sea,China[J]. Journal of Environmental Sciences,2016,41(3):6-15.
[19] 刘苏静. 烟台近海海域典型污损生物调查及其防除研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2016.
[20] 周敏. 烟台海岸带人类活动强度与近海大型藻类灾害关系研究[D]. 烟台: 鲁东大学, 2021.
[21] 袁帅,袁鹏,司先才,等. 基于FVCOM的渤、黄海潮汐潮流数值模拟[J]. 海洋湖沼通报,2020,42(2):10-18. doi: 10.13984/j.cnki.cn37-1141.2020.02.002
[22] WEI H,HAINBUCHER D,POHLMANN T,et al. Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai Sea[J]. Journal of Marine Systems,2004,44(3/4):141-151.
[23] 安永宁,杨鲲,王莹,等. MIKE21模型在海洋工程研究中的应用[J]. 海岸工程,2013,32(3):1-10.
[24] 冯静. MIKE21FM数值模型在海洋工程环境影响评价中的应用研究[D]. 青岛: 中国海洋大学, 2011.
[25] LI X J,HUANG M T,WANG R H. Numerical simulation of Donghu Lake hydrodynamics and water quality based on remote sensing and Mike21[J]. ISPRS International Journal of Geo-Information,2020,9(2):94-113.
[26] GOU H,LUO F,LI R,et al. Modeling study on the hydrodynamic environmental impact caused by the sea for regional construction near the Yanwo Island in Zhoushan,China[J]. Water,2019,11(8):1674-1695. doi: 10.3390/w11081674
[27] DHI. Mike21 and Mike3 Flow Model FM Hydrodynamic and Transport Module Scientific Documentation[M]. Denmark: DHI Water and Environment, 2007.
[28] 李孟国, 李蓓, 吴以喜, 等. JTS/T231-2-2010, 海岸与河口潮流泥沙模拟技术规程[S]. 北京: 人民交通出版社, 2010.
[29] 程银才, 魏清顺, 赵树旗. 水力学[M] . 武汉: 华中科技大学出版社, 2019.