Impact of water regulation of the Yellow River on the hydrological characteristics of the estuary and sedimentary effects in 2020
-
摘要:
由于水利工程的影响,黄河的调水调沙通常都集中在较短的时间内进行,大量的泥沙与淡水输入到黄河口海域,使得该区域成为水文要素特征和地貌变化最为剧烈的区域之一。根据2020年大量的水文实测和地形资料,分析了黄河口海域温度、盐度时空分布变化规律和水下地形冲淤演变特征,探讨了黄河入海水沙对黄河口海域盐度分布和水下地形的影响。研究发现,2020年黄河水量调度极大改变了河口盐度及其分布,低流量时期盐度整体较高,低盐区分布范围有限;高流量时期盐度显著降低,低盐区水体范围明显扩大,满足了河口环境水流需求。黄河口海域2019—2021年整体呈淤积状态,现行河口区出现淤积,而孤东近岸、老河口区及离岸较深的海域呈冲刷状态,入海泥沙情势的变化对河口及毗邻海域的冲淤特征起着主导作用。
Abstract:Due to the influence of water conservancy projects, the water and sediment regulation of the Yellow River is usually carried out in a relatively short period of time, and a large amount of sediment and fresh water are transported to the adjacent areas off the Yellow River Estuary, which resulted in the most dramatic changes in hydrological characteristics and geomorphology. Based on a large number of measured data in 2020, the temporal and spatial distribution of temperature and salinity, and the evolution of submarine topography were analyzed in detail, and the influence of water and sediment of the Yellow River on salinity distribution and underwater topography were discussed. Results show that the water regulation of the Yellow River has greatly changed the salinity distribution. The salinity is higher in low flow period, and the distribution range of low salinity area is limited. During the period of high discharge, the salinity decreased significantly, and the water range in the low salinity area expanded significantly, which satisfied the flow demand of the estuary environment. The submerged delta has undergone significant deposition. The accretion trend occurred in the active submerged delta in 2019-2021, while the erosion appeared in the old Qingshuigou submerged delta, the Gudong littoral zone, and deeper offshore area. Runoff and sediment load have been playing dominant roles in accretion and erosion characteristics of the adjacent areas off the estuary.
-
表 1 6月份和7月份航次表层盐度等值线包围面积
Table 1. The enclosed area of surface salinity contour in June and July cruises
盐度等值线 6月份航次面积/km2 7月份航次面积/km2 20 0.2 191.1 21 3.4 276.0 22 7.7 370.0 23 14.7 543.6 24 24.2 856.8 25 40.0 1170.6 26 139.1 1526.5 27 364.2 2707.3 28 1169.1 4061.7 29 3320.8 4665.2 30 5376.2 5086.6 -
[1] 杨作升,李国刚,王厚杰,等. 55年来黄河下游逐日水沙过程变化及其对干流建库的响应[J]. 海洋地质与第四纪地质,2008,28(6):9-18.
[2] 毕乃双. 黄河三角洲毗邻海域悬浮泥沙扩散和季节性变化及冲淤效应[D]: 青岛: 中国海洋大学, 2009.
[3] 司源,王远见,任智慧. 黄河下游生态需水与生态调度研究综述[J]. 人民黄河,2017,39(3):61-64.
[4] 黄玉芳,娄广艳,葛雷,等. 基于时间序列遥感的2020年黄河三角洲湿地补水效果监测[J]. 人民黄河,2021,43(7):89-93.
[5] 谷源泽,徐丛亮,张朝晖,等. 黄河入海淡水对海洋生态调控响应研究[J]. 人民黄河,2019,41(8):68-75.
[6] 赵进平, 侍茂崇, 李诗新. 低盐区及渤海低盐区的盐度特征[J]. 海洋科学集刊, 1998: 249-260.
[7] 肖纯超,张龙军,杨建强. 2004—2009年黄河口近岸海域低盐区面积的变化趋势研究[J]. 中国海洋大学学报(自然科学版),2012,42(6):40-46.
[8] 李泽刚. 黄河口附近海区水文要素基本特征[J]. 黄渤海海洋,2000,18(3):20-28.
[9] 赵鹏,江文胜,毛新燕,等. 2000—2005年莱州湾盐度的变化及其主要影响因素[J]. 海洋与湖沼,2010,41(1):12-23.
[10] 张洪亮,杨建强,崔文林. 莱州湾盐度变化现状及其对海洋环境与生态的影响[J]. 海洋环境科学,2006,25(S1):11-14.
[11] 顾晨. 波流共同作用下黄河入海悬浮物质三维扩散规律研究[D]. 青岛: 中国海洋大学, 2013: 1-78.
[12] 刘晓燕, 连煜, 可素娟. 黄河河口生态需水分析[J]. 水利学报, 2009, 40(8): 956-961.
[13] 薛小杰,巩琳琳,黄强. 黄河河口生态需水量研究[J]. 西北农林科技大学学报(自然科学版),2012,40(8):223-229.
[14] 于守兵,凡姚申,余欣,等. 黄河河口生态需水研究进展与展望[J]. 水利学报,2020,51(9):1101-1110.
[15] 张爱静, 董哲仁, 赵进勇, 等. 黄河水量统一调度与调水调沙对河口的生态水文影响[J]. 水利学报, 2013, 44(8): 987-993
[16] 刘晓燕,连煜,黄锦辉,等. 黄河环境流研究[J]. 科技导报,2008,26(17):24-30.
[17] 拾兵,李希宁,朱玉伟. 黄河口滨海区生态需水量研究[J]. 人民黄河,2005,27(10):76-77.
[18] 毕乃双,杨作升,王厚杰,等. 黄河调水调沙期间黄河入海水沙的扩散与通量[J]. 海洋地质与第四纪地质,2010,30(2):27-34.
[19] 徐丛亮,李金萍,谷硕,等. 黄河调水调沙入海切变锋分析[J]. 人民黄河,2014,36(1):18-21.
[20] 何传光,李小娟,左学玲. 黄河口滨海区泥沙容重试验分析研究[J]. 水资源开发与管理,2017(4):70-72.
[21] 陈小英,陈沈良,李九发,等. 黄河三角洲孤东及新滩海岸侵蚀机制研究[J]. 海岸工程,2005,24(4):1-10.
[22] 卢昱岑,沈永明,张明. 地形演变对黄河口切变锋位置及盐度分布的影响[J]. 水动力学研究与进展(A辑),2012,27(3):348-358.
[23] 韩香举,陈沈良,付作民,等. 现行黄河口滨海区冲淤时空演变及其影响因素[J]. 海洋通报,2020,39(5):567-580.