A new method of rock physics modeling and its application in low permeability reservoirs of Z Gasfield, East Sea Basin
-
摘要:
低渗储层孔隙结构复杂,非均质性强,不同类型低渗储层之间也常存在较大物性变化,难以采用统一的岩石物理模型表征储层参数与弹性参数之间的关系。针对上述难题,提出了低渗储层分层岩石物理建模方法:针对中低孔-中低渗储层采用基于DEM理论的流体均匀饱和模型;针对特低孔、特低渗储层采用基于KT理论的流体非均匀饱和模型。基于分层岩石物理建模预测的纵、横波速度与测井真实速度吻合较好,验证了该方法的可靠性。在建立准确岩石物理模型的基础上,进一步分析了弹性参数受泥质含量、孔隙度、孔隙形状等因素影响的变化规律,从而指导低渗储层的岩性及“甜点”预测。
Abstract:Low-permeability reservoirs have complex pore structure characteristics for which conventional petrophysical modeling methods are not suitable for detection. In addition, physical properties among different layers of low-permeability reservoirs vary considerably, so it is difficult to use unified petrophysical model to characterize the relationship between reservoir parameters and elastic parameters. We proposed a new technical approach to stratified rock physics modeling of low permeability reservoirs: for medium-low porosity and medium-low permeability reservoirs, the fluid uniform saturation model based on DEM theory was adopted; for extra-low porosity and extra-low permeability reservoirs, the fluid non-uniform saturation model based on KT theory was adopted. The predicted P-wave and S-wave velocities based on stratified rock physical modeling were in good agreement with the real logging data, which verified the reliability of the method. Based on the accurate petrophysical models, the laws of elastic parameters variations with shale content, porosity, and pore shape were further analyzed, to guide the prediction of lithology and "sweet spot" in low permeability reservoir.
-
Key words:
- low permeability reservoir /
- pore structure /
- rock physics modeling /
- elastic parameter /
- bulk modulus /
- shear modulus
-
-
[1] 欧阳健. 加强岩石物理研究提高油气勘探效益[J]. 石油勘探与开发,2001,28(2):1-5.
[2] 马淑芳,韩大匡,甘利灯,等. 地震岩石物理模型综述[J]. 地球物理学进展,2010,25(2):460-471.
[3] BATZLE M,WANG Z. Seismic properties of pore fluids[J]. Geophysics,1992,57(1):1396-1468.
[4] 印兴耀,刘欣欣. 储层地震岩石物理建模研究现状与进展[J]. 石油物探,2016,55(3):309-325.
[5] 姜仁,曾庆才,黄家强,等. 岩石物理分析在叠前储层预测中的应用[J]. 石油地球物理勘探,2014,49(2):322-328.
[6] 刘军,刘杰,曹均,等. 基于岩石物理实验的储层与孔隙流体敏感参数特征:以珠江口盆地东部中—深层碎屑岩储层为例[J]. 石油学报,2019,40(S1):197-205.
[7] 张益明,秦小英,郭智奇,等. 针对致密砂岩气储层复杂孔隙结构的岩石物理模型及其应用[J]. 吉林大学学报(地球科学版),2021,51(3):927-939.
[8] 王震宇,刘俊州. 岩石物理建模技术在致密砂岩储层预测中的应用:以鄂尔多斯盆地北部H区块为例[J]. 物探化探计算技术,2019,41(1):34-40.
[9] 陈昌. 叠前地震反演在清水地区砂砾岩优质储层预测中的应用[J]. 海洋地质前沿,2017,33(6):59-64.
[10] 肖张波,雷永昌,邱欣卫,等. 泊松阻抗属性在陆丰南古近系低渗砂岩储层“甜点”识别中的应用[J]. 海洋地质前沿,2022,38(6):70-77.
[11] 姜雨,涂齐催. 利用岩石物理分析及叠前反演技术解决致密砂岩气储层预测问题:以西湖凹陷A区块为例[J]. 海洋地质前沿,2015,31(11):36-42.
[12] 印兴耀,刘倩. 致密储层各向异性地震岩石物理建模及应用[J]. 中国石油大学学报(自然科学版),2016,40(2):52-58.
[13] 张龙海,刘忠华,周灿灿,等. 低孔低渗储集层岩石物理分类方法的讨论[J]. 石油勘探与开发,2008,35(6):763-768.
[14] 李芳,邓勇,胡林,等. 地球物理技术预测莺歌海盆地低孔低渗储层孔隙度[J]. 地质科技通报,2022,41(4):84-90.
[15] 杨志芳,曹宏,姚逢昌,等. 复杂孔隙结构储层地震岩石物理分析及应用[J]. 中国石油勘探,2014,19(3):50-56.
[16] BIOT M A. Theory of propagation of elastic waves in a fluid saturated porous solid[J]. Journal of the Acoustical Society of America,1956,28(2):168-191. doi: 10.1121/1.1908239
[17] XU S,WHITE R. A new velocity model for clay-sand mixtures[J]. Geophysical prospecting,1995,43(1):91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x
[18] MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook: tools for seismic analysis of porous media[M]. Cambridge: Cambridge University Press, 2009.
[19] KUSTER G T,TOKSÖZ M N. Velocity and attenuation of seismic waves in two-phase media:part I. theoretical formulations[J]. Geophysics,1974,39(5):587-606. doi: 10.1190/1.1440450
[20] BERRYMAN J G. Long‐wavelength propagation in composite elastic media I. spherical inclusions[J]. The Journal of the Acoustical Society of America,1980,68:1809-1819. doi: 10.1121/1.385171
[21] GASSMANN F. Elastic waves through a packing of spheres[J]. Geophysics,1951,16(4):673-685. doi: 10.1190/1.1437718
[22] CIZ R,SHAPIRO S A. Generalization of Gassmann’s equations for porous media saturated with a solid material[J]. Geophysics,2007,72(6):75-79. doi: 10.1190/1.2772400
[23] 印兴耀,刘欣欣,曹丹平. 基于Biot相洽理论的致密砂岩弹性参数计算方法[J]. 石油物探,2013,52(5):445-451.
[24] HILL R. The elastic behavior of crystalline aggregate[J]. Proceedings of the Physical Society,1952,65:349-354.
-