颗粒形状对粗粒土剪切变形影响的细观研究

魏婕, 魏玉峰, 黄鑫. 颗粒形状对粗粒土剪切变形影响的细观研究[J]. 水文地质工程地质, 2021, 48(1): 114-122. doi: 10.16030/j.cnki.issn.1000-3665.202002017
引用本文: 魏婕, 魏玉峰, 黄鑫. 颗粒形状对粗粒土剪切变形影响的细观研究[J]. 水文地质工程地质, 2021, 48(1): 114-122. doi: 10.16030/j.cnki.issn.1000-3665.202002017
WEI Jie, WEI Yufeng, HUANG Xin. A meso-scale study of the influence of particle shape on shear deformation of coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 114-122. doi: 10.16030/j.cnki.issn.1000-3665.202002017
Citation: WEI Jie, WEI Yufeng, HUANG Xin. A meso-scale study of the influence of particle shape on shear deformation of coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 114-122. doi: 10.16030/j.cnki.issn.1000-3665.202002017

颗粒形状对粗粒土剪切变形影响的细观研究

  • 基金项目: 国家自然科学基金资助(42072303);四川省教育厅科研计划重点项目资助(18ZA0045)
详细信息
    作者简介: 魏婕(1996-),女,硕士研究生,研究方向为岩土工程。E-mail: 740641714@qq.com
    通讯作者: 魏玉峰(1979-),男,博士后,副教授,主要从事地质工程、岩土工程科研和教学工作。E-mail: weiyufeng@cdut.edu.cn
  • 中图分类号: TU411.7

A meso-scale study of the influence of particle shape on shear deformation of coarse-grained soil

More Information
  • 颗粒形状是影响粗粒土密实度、力学与渗流等特性的主要因素之一。为了分析颗粒形状对粗粒土剪切特性的影响,采用离散元法生成4种不同形状的颗粒组,进行粗粒土直剪试验模拟与剪切宏细观响应研究,得出了颗粒形状对剪应力-剪位移、体应变-剪位移的影响,分析了粗粒土剪切应力、应变特性与剪胀特性。通过分析剪切带厚度、颗粒旋转量值、平均接触数、孔隙率及接触力系等宏细观参量的演化规律,研究颗粒形状在宏细观尺度上对粗粒土的影响。研究表明:异形颗粒间的咬合自锁作用大于纯圆颗粒,试样的抗剪强度有随形状系数的减小而增大的趋势。试样颗粒在外荷载作用下发生运动,应变主要表现在颗粒运动剧烈、剪胀幅度较大的剪切带内。颗粒形状系数F减小,试样的初始平均接触数增加,内摩擦角φ增大,剪切带内孔隙率增量越大,剪胀幅度越大。剪切过程中强力链聚集于剪切带内并起骨架作用,随着形状系数的减小,力链长度在0~5所占百分比呈增大趋势;剪切带内强力链的数目随着形状系数的减小而增加,峰值含量在30%~35%之间。

  • 加载中
  • 图 1  试样颗粒

    Figure 1. 

    图 2  颗粒a初始模型结构图

    Figure 2. 

    图 3  颗粒a室内试验与数值试验结果对比图

    Figure 3. 

    图 4  不同形状系数试样的剪应力–剪切位移关系曲线

    Figure 4. 

    图 5  不同形状系数试样的体应变-剪切位移曲线

    Figure 5. 

    图 6  剪切带厚度

    Figure 6. 

    图 7  颗粒旋转量值

    Figure 7. 

    图 8  异形颗粒等效滚动示意图[25]

    Figure 8. 

    图 9  剪切过程中平均接触数Cn的演变规律

    Figure 9. 

    图 10  C0-Fφ-F关系

    Figure 10. 

    图 11  F=1.000时孔隙率的演化

    Figure 11. 

    图 12  不同颗粒形状粗粒土剪切带内孔隙率的演化

    Figure 12. 

    图 13  剪切过程中的力链网络

    Figure 13. 

    图 14  力链长度分布概率

    Figure 14. 

    图 15  不同形状系数试样的力链长度分布

    Figure 15. 

    图 16  不同颗粒形状试样剪切过程中剪切带内强力链含量百分比

    Figure 16. 

    表 1  形状参数统计表

    Table 1.  Statistics of the shape coefficients

    试样颗粒 F1 F2 F
    a 1.000 1.000 1.000
    b 0.912 0.728 0.820
    c 0.910 0.650 0.780
    d 0.799 0.644 0.722
    下载: 导出CSV

    表 2  模型细观参数

    Table 2.  Mesoscopic parameters of the model

    颗粒密度
    ρs/(kg·m−3
    初始孔隙率ns 颗粒法向
    接触刚度
    kn/(N·m−1
    颗粒切向
    接触刚度
    kn/(N·m−1
    粒间摩擦
    系数fc
    墙体法向
    接触刚度/
    (N·m−1
    2643 0.13 4.0×107 3.0×107 0.6 2×108
    下载: 导出CSV
  • [1]

    丁瑜, 饶云康, 倪强, 等. 颗粒级配与孔隙比对粗粒土渗透系数的影响[J]. 水文地质工程地质,2019,46(3):108 − 116. [DING Yu, RAO Yunkang, NI Qiang, et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology,2019,46(3):108 − 116. (in Chinese with English abstract)

    [2]

    罗伟锦, 杨兰强, 熊署丹. 考虑颗粒破碎的无黏性粗粒料的剪胀模型研究[J]. 水文地质工程地质,2015,42(6):71 − 79. [LUO Weijin, YANG Lanqiang, XIONG Shudan. Dilatancy model including particle breakage for cohesion less coarse aggregates[J]. Hydrogeology & Engineering Geology,2015,42(6):71 − 79. (in Chinese with English abstract)

    [3]

    李涛, 付宏渊, 周功科, 等. 降雨入渗条件下粗粒土路堤暂态饱和区发展规律及稳定性研究[J]. 水文地质工程地质,2013,40(5):74 − 80. [LI Tao, FU Hongyuan, ZHOU Gongke, et al. A study of development law and stability of transient saturated areas of coarse-grained soil embankment under rainfall infiltration[J]. Hydrogeology & Engineering Geology,2013,40(5):74 − 80. (in Chinese with English abstract)

    [4]

    史乃伟, 李飒, 刘小龙, 等. 粗砂直剪试验与离散元细观机理分析[J]. 科学技术与工程,2019,19(5):261 − 266. [SHI Naiwei, LI Sa, LIU Xiaolong, et al. Critical state test and meso mechanism of sand[J]. Science Technology and Engineering,2019,19(5):261 − 266. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2019.05.040

    [5]

    刘洋, 吴顺川, 周健. 单调荷载下砂土变形过程数值模拟及细观机制研究[J]. 岩土力学,2008,29(12):3199 − 3204. [LIU Yang, WU Shunchuan, ZHOU Jian. Numerical simulation of sand deformation under monotonic loading and mesomechanical analysis[J]. Rock and Soil Mechanics,2008,29(12):3199 − 3204. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.12.004

    [6]

    GUO Y G. Influence of normal stress and grain shape on granular friction: Results of discrete element simulations[J]. Journal of Geophysical Research Atmospheres,2004,109(B12):B12305. doi: 10.1029/2004JB003044

    [7]

    MORGAN J K, BOETTCHER M S. Numerical simulations of granular shear zones using the distinct element method: 1. Shear zone kinematics and the micromechanics of localization[J]. Journal of Geophysical Research: Solid Earth,1999,104(B2):2703 − 2719. doi: 10.1029/1998JB900056

    [8]

    ROTHENBURG L, BATHURST R J. Analytical study of induced anisotropy in idealized granular materials[J]. Géotechnique,1989,39(4):601 − 614. doi: 10.1680/geot.1989.39.4.601

    [9]

    朱泽奇, 盛谦, 程红战, 等. 基于直接生成法的土石混合体三维随机模型构建与数值仿真研究[J]. 岩土力学,2017,38(4):1188 − 1194. [ZHU Zeqi, SHENG Qian, CHENG Hongzhan, et al. 3D stochastic model and numerical simulation of soil-rock mixture based on direct method[J]. Rock and Soil Mechanics,2017,38(4):1188 − 1194. (in Chinese with English abstract)

    [10]

    杨贵, 许建宝, 孙欣, 等. 颗粒形状对人工模拟堆石料强度和变形特性影响的试验研究[J]. 岩土力学,2017,38(11):3113 − 3118. [YANG Gui, XU Jianbao, SUN Xin, et al. Experimental study of influence of particle shape on strength and deformation for artificial rockfill materials[J]. Rock and Soil Mechanics,2017,38(11):3113 − 3118. (in Chinese with English abstract)

    [11]

    王鹏程, 刘建坤. 颗粒形状对不良级配碎石集料剪切特性的影响[J]. 岩土力学,2017,38(8):2198 − 2202. [WANG Pengcheng, LIU Jiankun. Effect of particle shape on the shear behavior of open-graded crushed aggregate[J]. Rock and Soil Mechanics,2017,38(8):2198 − 2202. (in Chinese with English abstract)

    [12]

    张程林, 周小文. 砂土颗粒三维形状模拟离散元算法研究[J]. 岩土工程学报,2015,37(增刊1):115 − 119. [ZHANG Chenglin, ZHOU Xiaowen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering,2015,37(Sup1):115 − 119. (in Chinese with English abstract)

    [13]

    刘广, 荣冠, 彭俊, 等. 矿物颗粒形状的岩石力学特性效应分析[J]. 岩土工程学报,2013,35(3):540 − 550. [LIU Guang, RONG Guan, PENG Jun, et al. Mechanical behaviors of rock affected by mineral particle shapes[J]. Chinese Journal of Geotechnical Engineering,2013,35(3):540 − 550. (in Chinese with English abstract)

    [14]

    何亮, 魏玉峰, 潘远阳, 等. 基于能量耗散机制的粗粒土圆度损伤特性分析[J]. 水文地质工程地质,2019,46(5):120 − 126. [HE Liang, WEI Yufeng, PAN Yuanyang Y, et al. Analyses of roundness damage characteristics of coarse-grained soil based on energy dissipation mechanism[J]. Hydrogeology & Engineering Geology,2019,46(5):120 − 126. (in Chinese with English abstract)

    [15]

    DODDS J S. Particle shape and stiffness-effects on soil behavior[D]. Atlanta: Georgia Institute of Technology, 2003.

    [16]

    刘清秉,项伟, LEHANE B M, 等. 颗粒形状对砂土抗剪强度及桩端阻力影响机制试验研究[J]. 岩石力学与工程学报, 2011, 30(2): 400−409.

    LIU Qingbing, XIANG Wei, LEHANE B M, et al. Experimental study of effect of particle shapes on shear strength of sand and tip resistance of driven piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 400−409. (in Chinese with English abstract)

    [17]

    史旦达, 周健, 刘文白, 等. 砂土单调剪切特性的非圆颗粒模拟[J]. 岩土工程学报,2008,30(9):1361 − 1366. [SHI Danda, ZHOU Jian, LIU Wenbai, et al. Numerical simulation for behaviors of sand with non-circular particles under monotonic shear loading[J]. Chinese Journal of Geotechnical Engineering,2008,30(9):1361 − 1366. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2008.09.017

    [18]

    孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报,2011,30(10):2113 − 2119. [KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(10):2113 − 2119. (in Chinese with English abstract)

    [19]

    张翀, 舒赣平. 颗粒形状对颗粒流模拟双轴压缩试验的影响研究[J]. 岩土工程学报,2009,31(8):1281 − 1286. [ZHANG Chong, SHU Ganping. Effect of particle shape on biaxial tests simulated by particle flow code[J]. Chinese Journal of Geotechnical Engineering,2009,31(8):1281 − 1286. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2009.08.020

    [20]

    任树林, 曾亚武, 赵凯. 颗粒形状对断层摩擦强度影响的数值试验研究[J]. 水利与建筑工程学报,2019,17(3):42 − 47. [REN Shulin, ZENG Yawu, ZHAO Kai. Numerical experiments on the effects of particle shape on frictional strength of faults[J]. Journal of Water Resources and Architectural Engineering,2019,17(3):42 − 47. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1144.2019.03.007

    [21]

    郑俊杰, 赖汉江, 董友扣, 等. 桩承式路堤承载特性颗粒流细观模拟[J]. 华中科技大学学报(自然科学版),2012,40(11):43 − 47. [ZHENG Junjie, LAI Hanjiang, DONG Youkou, et al. Mesomechanical analysis of bearing characteristics of pile-supported embankment with particle flow code[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2012,40(11):43 − 47. (in Chinese with English abstract)

    [22]

    WANG J, DOVE J E, GUTIERREZ M S. Discrete-continuum analysis of shear banding in the direct shear test[J]. Géotechnique,2007,57(6):513 − 526. doi: 10.1680/geot.2007.57.6.513

    [23]

    蒋明镜, 王富周, 朱合华. 单粒组密砂剪切带的直剪试验离散元数值分析[J]. 岩土力学,2010,31(1):253 − 257. [JIANG Mingjing, WANG Fuzhou, ZHU Hehua. Shear band formation in ideal dense sand in direct shear test by discrete element analysis[J]. Rock and Soil Mechanics,2010,31(1):253 − 257. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.01.043

    [24]

    ODA M, KAZAMA H, KONISHI J. Effects of induced anisotropy on the development of shear bands in granular materials[J]. Mechanics of Materials,1998,28(1/2/3/4):103 − 111.

    [25]

    周伦伦. 颗粒破碎与形状对颗粒材料力学性质影响的离散元研究[D]. 武汉: 武汉大学, 2017.

    ZHOU Lunlun. Dem investigation of influence of particle breakage and shape on the mechanical behaviors of granular materials[D]. Wuhan: Wuhan University, 2017.(in Chinese with English abstract)

    [26]

    IWASHITA K, ODA M. Rolling resistance at contacts in simulation of shear band development by DEM[J]. Journal of Engineering Mechanics,1998,124(3):285 − 292. doi: 10.1061/(ASCE)0733-9399(1998)124:3(285)

    [27]

    ESTRADA N, AZÉMA E, RADJAI F, et al. Identification of rolling resistance as a shape parameter in sheared granular media[J]. Physical Review E,2011,84:011306. doi: 10.1103/PhysRevE.84.011306

    [28]

    ODA M. Co-ordination number and its relation to shear strength of granular material[J]. Soils and Foundations,1977,17(2):29 − 42. doi: 10.3208/sandf1972.17.2_29

    [29]

    孙其诚, 金峰, 王光谦, 等. 二维颗粒体系单轴压缩形成的力链结构[J]. 物理学报, 2010, 59(1): 30−37.

    SUN Qicheng, JIN Feng, WANG Guangqian, et al. Force chains in a uniaxially compressed static granular matter in 2D[J]. Acta Physica Sinica, 2010, 59(1): 30−37. (in Chinese with English abstract)

    [30]

    孙其诚, 辛海丽, 刘建国, 等. 颗粒体系中的骨架及力链网络[J]. 岩土力学,2009,30(增刊1):83 − 87. [SUN Qicheng, XIN Haili, LIU Jianguo, et al. Skeleton and force chain network in static granular material[J]. Rock and Soil Mechanics,2009,30(Sup1):83 − 87. (in Chinese with English abstract)

  • 加载中

(16)

(2)

计量
  • 文章访问数:  1695
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2020-02-18
修回日期:  2020-03-07
刊出日期:  2021-01-15

目录