玄武岩纤维加筋黄土承载比试验研究

李沛达, 骆亚生, 陈箐芮, 汪国刚. 玄武岩纤维加筋黄土承载比试验研究[J]. 水文地质工程地质, 2021, 48(1): 131-137. doi: 10.16030/j.cnki.issn.1000-3665.202002031
引用本文: 李沛达, 骆亚生, 陈箐芮, 汪国刚. 玄武岩纤维加筋黄土承载比试验研究[J]. 水文地质工程地质, 2021, 48(1): 131-137. doi: 10.16030/j.cnki.issn.1000-3665.202002031
LI Peida, LUO Yasheng, CHENG Qingrui, WANG Guogang. An experimental study of the California bearing ratio of basalt fiber reinforced loess[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 131-137. doi: 10.16030/j.cnki.issn.1000-3665.202002031
Citation: LI Peida, LUO Yasheng, CHENG Qingrui, WANG Guogang. An experimental study of the California bearing ratio of basalt fiber reinforced loess[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 131-137. doi: 10.16030/j.cnki.issn.1000-3665.202002031

玄武岩纤维加筋黄土承载比试验研究

  • 基金项目: 国家重点研发计划资助(2017YFC0504703)
详细信息
    作者简介: 李沛达(1992-),男,硕士,研究方向为纤维加筋土。E-mail: 987963327@qq.com
    通讯作者: 骆亚生(1967-),男,博士,教授,从事黄土静、动力学特性试验、理论及工程应用研究。E-mail: lyas1967@nwsuaf.edu.cn
  • 中图分类号: TU411

An experimental study of the California bearing ratio of basalt fiber reinforced loess

More Information
  • 为研究纤维加筋黄土CBR值影响因素及纤维增强土体机理,以短切玄武岩纤维为筋材,通过改变土体含水率、纤维长度、纤维含量、击实次数、浸水时间等条件进行加州承载比试验,探究初始含水率、纤维参数及试验方法对加筋土局部抗剪强度的影响规律。结果表明:纤维加筋土CBR值随含水率的增加呈现先增大后减小的趋势,存在“施工最优含水率”且相比击实试验最优含水率高1%~3%左右;纤维加筋土CBR值高于黄土CBR值,确定纤维长度20 mm,纤维含量0.4%为最优配比;击实次数从30击增加到98击,黄土CBR值提高273%,纤维加入后CBR值提高327%,加筋作用使土体通过提高击实功来提升强度的效果更加显著;浸水对试样CBR值影响较大,浸水时间对试样CBR值影响较小,且纤维的加入使试样对浸水时间的敏感度进一步降低,加筋土浸水2 d后强度降低54%,浸水4 d后强度降低58%。

  • 加载中
  • 图 1  含水率对纤维加筋土CBR值的影响

    Figure 1. 

    图 2  纤维含量对纤维加筋土CBR值的影响

    Figure 2. 

    图 3  纤维长度对纤维加筋土CBR值的影响

    Figure 3. 

    图 4  击实次数对纤维加筋土CBR值的影响

    Figure 4. 

    图 5  浸水时间对纤维加筋土CBR值的影响

    Figure 5. 

    表 1  黄土的物理性质指标

    Table 1.  Physical properties of loess

    天然密度ρ/(g·cm−3) 比重Gs 天然含水率w/% 塑限wP/% 液限wL/% 塑性指数IP 孔隙比e
    1.68 2.71 17.5% 21.2 35.2 14 0.90
    下载: 导出CSV

    表 2  玄武岩纤维的物理力学参数

    Table 2.  Physical and mechanical parameters of basalt fiber

    密度
    ρ/(g·cm−3)
    单丝直径
    D/μm
    抗拉强度/
    MPa
    弹性模量/
    GPa
    使用温度/
    耐酸碱性
    2.63 13 3000~4800 91~110 −270~650 极强
    下载: 导出CSV

    表 3  加筋土试验参数

    Table 3.  Test parameters of the reinforced soil samples

    纤维长度/mm 纤维含量/%
    w=11.1% w=12.1% w=13.1% w=14.1% w=15.1%
    5 0 0.2 0.4 0.6 0.8
    10 0 0.2 0.4 0.6 0.8
    20 0 0.2 0.4 0.6 0.8
    40 0 0.2 0.4 0.6 0.8
    下载: 导出CSV

    表 4  不同击实次数、浸水时间的试验参数

    Table 4.  Test parameters of different compaction times and soaking times

    土样 浸水时间/d
    击实次数0 击实次数50 击实次数98
    素土 0 2 4
    加筋土 0 2 4
    下载: 导出CSV

    表 5  不同纤维长度及含量的击实试验结果

    Table 5.  Compaction test results of different fiber contents and lengths

    纤维长度/mm 纤维含量/% 最大干密度ρdmax/(g·cm−3) wop /%
    0 0 1.95 13.1
    5 0.2 1.94 13.5
    0.4 1.92 12.9
    0.6 1.91 12.7
    0.8 1.89 12.6
    10 0.2 1.93 13.3
    0.4 1.93 12.8
    0.6 1.91 12.4
    0.8 1.90 12.9
    20 0.2 1.93 12.9
    0.4 1.92 12.3
    0.6 1.92 13.2
    0.8 1.90 13.3
    40 0.2 1.92 12.6
    0.4 1.91 12.7
    0.6 1.90 13.3
    0.8 1.88 13.0
    下载: 导出CSV
  • [1]

    ANAGNOSTOPOULOS C A, TZETZIS D, BERKETIS K. Shear strength behaviour of polypropylene fiber reinforced cohesive soils[J]. Geomechanics and Geoengineering,2014,9(3):241 − 251. doi: 10.1080/17486025.2013.804213

    [2]

    刘建龙, 侯天顺, 骆亚生. 棉纤维加筋土无侧限抗压强度试验研究[J]. 水力发电学报,2018,37(2):12 − 21. [LIU Jianlong, HOU Tianshun, LUO Yasheng. Unconfined compressive strength of synthetic cotton fibers reinforced soil[J]. Journal of Hydroelectric Engineering,2018,37(2):12 − 21. (in Chinese with English abstract)

    [3]

    马闫, 谢婉丽, 彭淑君, 等. 加筋方式对黄土动力特性影响三轴试验研究[J]. 水文地质工程地质,2017,44(4):50 − 56. [MA Yan, XIE Wanli, PENG Shujun, et al. Influence of the reinforce scheme on dynamic properties of the reinforced loess with dynamic triaxial test[J]. Hydrogeology & Engineering Geology,2017,44(4):50 − 56. (in Chinese with English abstract)

    [4]

    吴燕开, 牛斌, 桑贤松. 随机分布剑麻纤维加筋土力学性能试验研究[J]. 水文地质工程地质,2012,39(6):77 − 81. [WU Yankai, NIU Bin, SANG Xiansong. Experimental study of mechanical properties of soil randomly included with sisal fiber[J]. Hydrogeology & Engineering Geology,2012,39(6):77 − 81. (in Chinese with English abstract)

    [5]

    高磊, 胡国辉, 杨晨, 等. 玄武岩纤维加筋黏土的剪切强度特性[J]. 岩土工程学报,2016,38(增刊 1):231 − 237. [GAO Lei, HU Guohui, YANG Chen, et al. Shear strength characteristics of basalt fiber-reinforced clay[J]. Chinese Journal of Geotechnical Engineering,2016,38(Sup 1):231 − 237. (in Chinese with English abstract)

    [6]

    陈柏年, 朱凤艳, 韩勤. CBR试验内在机理研究及影响因素的分析[J]. 交通标准化,2001,29(1):28 − 30. [CHEN Bainian, ZHU Fengyan, HAN Qin. Research on the internal mechanism of CBR test and analysis of influencing factors[J]. Communications Standardization,2001,29(1):28 − 30. (in Chinese with English abstract) doi: 10.3869/j.issn.1002-4786.2001.01.010

    [7]

    朱志铎, 郝建新, 黄立平. CBR试验影响因素及在工程中应注意的几个问题[J]. 岩土力学,2006,27(9):1593 − 1595. [ZHU Zhiduo, HAO Jianxin, HUANG Liping. Influential factors in CBR test and several problems to be noticed in engineering[J]. Rock and Soil Mechanics,2006,27(9):1593 − 1595. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2006.09.034

    [8]

    袁克阔, 党进谦, 卓莉. 黄土路基CBR值影响因素研究[J]. 路基工程,2009(6):125 − 127. [YUAN Kekuo, DANG Jinqian, ZHUO Li. Study on influencing factors of CBR value of loess subgrade[J]. Subgrade Engineering,2009(6):125 − 127. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8825.2009.06.063

    [9]

    李萍, 徐佳祥, 温学涛, 等. 石灰改良黄土路基的CBR试验研究[J]. 甘肃科学学报,2008,20(4):74 − 77. [LI Ping, XU Jiaxiang, WEN Xuetao, et al. CBR experiment study of loess subgrade meliorated with lime[J]. Journal of Gansu Sciences,2008,20(4):74 − 77. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-0366.2008.04.021

    [10]

    武建民, 顾伟杰, 陈忠达. 黄土路基CBR值试验方法研究[J]. 交通标准化,2005,33(增刊 1):125 − 127. [WU Jianmin, GU Weijie, CHEN Zhongda. Study on CBR test method for loess roadbed[J]. Communications Standardization,2005,33(Sup 1):125 − 127. (in Chinese with English abstract)

    [11]

    杨和平, 赵鹏程, 郑健龙. 膨胀土填料改进CBR试验方法的提出与验证[J]. 岩土工程学报,2007,29(12):1751 − 1757. [YANG Heping, ZHAO Pengcheng, ZHENG Jianlong. Suggestion and verification on modified CBR test method for expansive soils fill[J]. Chinese Journal of Geotechnical Engineering,2007,29(12):1751 − 1757. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2007.12.001

    [12]

    郑军, 阎长虹, 夏文俊, 等. CMSC型固化剂改良土的新型CBR试验研究[J]. 工程地质学报,2008,16(4):551 − 556. [ZHENG Jun, YAN Changhong, XIA Wenjun, et al. Study of new CBR test on improved soil with CMSC firming agent[J]. Journal of Engineering Geology,2008,16(4):551 − 556. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.04.020

    [13]

    周运瑜, 余江滔, 陆洲导, 等. 玄武岩纤维加固震损混凝土框架节点的抗震性能[J]. 中南大学学报(自然科学版),2010,41(4):1514 − 1521. [ZHOU Yunyu, YU Jiangtao, LU Zhoudao, et al. Seismic behavior of BFRP-reinforced pre-damaged concrete beam-column joints[J]. Journal of Central South University (Science and Technology),2010,41(4):1514 − 1521. (in Chinese with English abstract)

    [14]

    傅珍, 黄振, 马峰. 玄武岩纤维对老化沥青混合料路用性能的影响[J]. 材料导报,2016,30(2):118 − 122. [FU Zhen, HUANG Zhen, MA Feng. Effect of basalt fiber on the road performance of aged asphalt mixture[J]. Materials Review,2016,30(2):118 − 122. (in Chinese with English abstract)

    [15]

    交通部公路科学研究院. 公路土工试验规程: JTG E40-2007[S]. 北京: 人民交通出版社, 2007.

    Highway Research Institute of Ministry of Communications. Test methods of soils for highway engineering: JTG E40-2007[S]. Beijing: China Communications Press, 2007. (in Chinese)

    [16]

    张金利, 蒋正国, 杨钢. 聚丙烯纤维红黏土力学特性试验研究[J]. 岩土工程学报,2011,33(增刊 1):427 − 432. [ZHANG Jinli, JIANG Zhengguo, YANG Gang. Experimental study on mechanical behaviors of polypropylene fiber reinforced clay[J]. Chinese Journal of Geotechnical Engineering,2011,33(Sup 1):427 − 432. (in Chinese with English abstract)

    [17]

    张晓颖, 荣新山, 徐吉成, 等. 玄武岩纤维表面改性对生物膜附着性能的影响[J]. 材料工程,2019,47(5):129 − 136. [ZHANG Xiaoying, RONG Xinshan, XU Jicheng, et al. Effect of surface modification of basalt fiber on biofilm attachment[J]. Journal of Materials Engineering,2019,47(5):129 − 136. (in Chinese with English abstract) doi: 10.11868/j.issn.1001-4381.2018.000189

    [18]

    郭爱国, 孔令伟, 胡明鉴, 等. 石灰改性膨胀土施工最佳含水率确定方法探讨[J]. 岩土力学,2007,28(3):517 − 521. [GUO Aiguo, KONG Lingwei, HU Mingjian, et al. On determination of optimum water content of lime-treated expansive soil[J]. Rock and Soil Mechanics,2007,28(3):517 − 521. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2007.03.016

    [19]

    王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报,2013,35(10):1933 − 1940. [WANG Deyin, TANG Chaosheng, LI Jian, et al. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering,2013,35(10):1933 − 1940. (in Chinese with English abstract)

    [20]

    唐朝生, 施斌, 顾凯. 纤维加筋土中筋/土界面相互作用的微观研究[J]. 工程地质学报,2011,19(4):610 − 614. [TANG Chaosheng, SHI Bin, GU Kai. Microstructural study on interfacial interactions between fiber reinforcement and soil[J]. Journal of Engineering Geology,2011,19(4):610 − 614. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.04.026

    [21]

    田堪良, 马俊, 李永红. 黄土结构性定量化参数的探讨[J]. 岩石力学与工程学报,2011,30(增刊 1):3179 − 3184. [TIAN Kanliang, MA Jun, LI Yonghong. Discussion on quantitative parameters of loess structure[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(Sup 1):3179 − 3184. (in Chinese with English abstract)

  • 加载中

(5)

(5)

计量
  • 文章访问数:  1108
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2020-02-25
修回日期:  2020-05-20
刊出日期:  2021-01-15

目录