消除气压效应估算黄土潜水的蒸发蒸腾强度

程东会, 袁靖, 齐丽军. 消除气压效应估算黄土潜水的蒸发蒸腾强度[J]. 水文地质工程地质, 2021, 48(2): 8-14. doi: 10.16030/j.cnki.issn.1000-3665.202003069
引用本文: 程东会, 袁靖, 齐丽军. 消除气压效应估算黄土潜水的蒸发蒸腾强度[J]. 水文地质工程地质, 2021, 48(2): 8-14. doi: 10.16030/j.cnki.issn.1000-3665.202003069
CHENG Donghui, YUAN Jing, QI Lijun. Estimation of groundwater evapotranspiration rate in the loess phreaticaquifer by removing the barometric effect[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 8-14. doi: 10.16030/j.cnki.issn.1000-3665.202003069
Citation: CHENG Donghui, YUAN Jing, QI Lijun. Estimation of groundwater evapotranspiration rate in the loess phreaticaquifer by removing the barometric effect[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 8-14. doi: 10.16030/j.cnki.issn.1000-3665.202003069

消除气压效应估算黄土潜水的蒸发蒸腾强度

  • 基金项目: 国家自然科学基金资助项目(41972248);陕西省自然科学基础研究计划(2019JM-146)
详细信息
    作者简介: 程东会(1969-),教授,主要从事地下水资源与环境方面教学和研究。E-mail: chdhbsh@chd.edu.cn
  • 中图分类号: P641.2

Estimation of groundwater evapotranspiration rate in the loess phreaticaquifer by removing the barometric effect

  • 潜水蒸发蒸腾(ETg)是干旱半干旱地区浅埋深地下水最主要的排泄方式,也是地下水系统中重要的均衡项。如果存在气压效应,用于估算地下水蒸发蒸腾强度的传统水位波动法则不适用。以黄土潜水为例,提出了一种基于水位变化和大气压变化规律的水位图方法,用于消除气压效应以获取潜水蒸发蒸腾强度。研究表明,大气压变化通常在午夜前,一般为22:00—24:00,会出现一个峰值,该时间段气压效应可以忽略,而且潜水蒸发蒸腾强度最小,此时潜水位的变化速率相当于净补给速率;在获取潜水净补给强度后,选择第二个时间段,0:00—4:00,此时潜水蒸发蒸腾强度最小,且气压一般处于连续下降阶段,可以用来估算气压效应系数。在此基础上,可利用水位均衡和水位波动法方便地估算潜水蒸发蒸腾强度。该方法数据获取容易,估算结果也较为准确。

  • 加载中
  • 图 1  研究区卫星影像图

    Figure 1. 

    图 2  研究场地气压年变化和日变化

    Figure 2. 

    图 3  观测期内研究场地潜水位变化和降雨分布

    Figure 3. 

    图 4  研究场地典型的气压变化与水位埋深变化的关系

    Figure 4. 

    图 5  气压日变化一般规律

    Figure 5. 

    图 6  观测期内研究场地潜水净补给强度估算结果

    Figure 6. 

    图 7  观测期研究场地的气压效应系数和气压效应引起水位变化

    Figure 7. 

    图 8  观测期内研究场地潜水蒸发蒸腾计算结果

    Figure 8. 

    表 1  水均衡法计算结果和实际结果对比

    Table 1.  Comparison of the calculated values by the water balance method with the actual results

    /cm /cm /cm /cm
    254.8 −65.6 −63.3 195.8
    计算水位变化量/cm 实测水位变化量/cm 绝对误差/cm 相对误差/%
    −69.9 −76.3 −6.4 8.4
    下载: 导出CSV
  • [1]

    CARRETERO S C, KRUSE E E. Relationship between precipitation and water-table fluctuation in a coastal dune aquifer: northeastern coast of the Buenos Aires Province, Argentina[J]. Hydrogeology Journal,2012,20(8):1613 − 1621. doi: 10.1007/s10040-012-0890-y

    [2]

    BUTLER J J JR, KLUITENBERG G J, WHITTEMORE D O, et al. A field investigation of phreatophyte-induced fluctuations in the water table[J]. Water Resources Research,2007,43(2):W02404.

    [3]

    WHITE W N. A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: Results of investigations in Escalante Valley, Utah[R]. Washington DC: US Geological Survey, 1932. Survey, 1932.

    [4]

    GRIBOVSZKI Z, KALICZ P, KUCSARA M, et al. Evapotranspiration calculation on the basis of the riparian zone water balance[J]. Acta Silvatica et Lignaria Hungarica,2008,4:95 − 106.

    [5]

    CHENG D H, DUAN J B, QIAN K, et al. Groundwater evapotranspiration under psammophilous vegetation covers in the Mu Us Sandy Land, Northern China[J]. Journal of Arid Land,2017,9(1):98 − 108. doi: 10.1007/s40333-016-0095-7

    [6]

    CHENG D H, LI Y, CHEN X H, et al. Estimation of groundwater evapotranspiration using diurnal water table fluctuations in the Mu Us Desert, Northern China[J]. Journal of Hydrology,2013,490:106 − 113. doi: 10.1016/j.jhydrol.2013.03.027

    [7]

    贾伍慧, 尹立河, 王晓勇, 等. 利用改进的Loheide方法计算地下水的蒸散发量[J]. 水文地质工程地质,2017,44(2):48 − 51. [JIA Wuhui, YIN Lihe, WANG Xiaoyong, et al. Quantifying groundwater evapotranspiration by the modified loheide method[J]. Hydrogeology & Engineering Geology,2017,44(2):48 − 51. (in Chinese with English abstract)

    [8]

    ROJSTACZER S, RILEY F S. Response of the water level in a well to earth tides and atmospheric loading under unconfined conditions[J]. Water Resources Research,1990,26(8):1803 − 1817. doi: 10.1029/WR026i008p01803

    [9]

    李海龙, 宋金颖, 万力, 等. 承压含水层井孔储存效应对气压波动引起的井孔水位波动的影响[J]. 水文地质工程地质,2013,40(4):1 − 6. [LI Hailong, SONG Jinying, WAN Li, et al. The response of well-aquifer systems to barometric loading[J]. Hydrogeology & Engineering Geology,2013,40(4):1 − 6. (in Chinese)

    [10]

    王丽亚, 郭海朋, 李文鹏, 等. 气压对观测井水位的影响及校正方法[J]. 水文地质工程地质,2012,39(6):29 − 34. [WANG Liya, GUO Haipeng, LI Wenpeng, et al. Impact of atmospheric loading on the water level in a well and methods for calibrating it[J]. Hydrogeology & Engineering Geology,2012,39(6):29 − 34. (in Chinese with English abstract)

    [11]

    赵丹, 王广才. 地下水位气压效应的消除及主要气压影响分波的识别[J]. 中国科学(技术科学),2013,43(1):79 − 86. [ZHAO Dan, WANG Guangcai. Removing barometric pressure effects from groundwater level and identifying main influential constituents[J]. Scientia Sinica Techologica,2013,43(1):79 − 86. (in Chinese with English abstract) doi: 10.1360/ze2013-43-1-79

    [12]

    张子广, 盛艳蕊, 张素欣, 等. 井水位对气压扰动的响应[J]. 地震研究,2010,33(2):170 − 175. [ZHANG Ziguang, SHENG Yanrui, ZHANG Suxin, et al. Response of water level on the well to air pressure perturbation[J]. Journal of Seismological Research,2010,33(2):170 − 175. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0666.2010.02.008

    [13]

    TOLL N J, RASMUSSEN T C. Removal of barometric pressure effects and earth tides from observed water levels[J]. Groundwater,2007,45(1):101 − 105. doi: 10.1111/j.1745-6584.2006.00254.x

    [14]

    BREDEHOEFT J D. Response of well-aquifer systems to earth tides[J]. Journal of Geophysical Research,1967,72(12):3075 − 3087. doi: 10.1029/JZ072i012p03075

    [15]

    QUILTY E G, ROELOFFS E A. Removal of barometric pressure response from water level data[J]. Journal of Geophysical Research: Solid Earth,1991,96(B6):10209 − 10218. doi: 10.1029/91JB00429

    [16]

    BUTLER JR J J, JIN W, MOHAMMED G A, et al. New insights from well responses to fluctuations in barometric pressure[J]. Groundwater,2011,49(4):525 − 533. doi: 10.1111/j.1745-6584.2010.00768.x

    [17]

    耿杰, 周斌, 张昭栋. 深井水位气压效率和相关系数在中强地震前的变化特征[J]. 西北地震学报,2002,24(3):257 − 261. [GENG Jie, ZHOU Bin, ZHANG Zhaodong. The characteristics of anomalous variations on barometric pressure efficiency and interrelation coefficient of groundwater level in deep wells before moderate and strong earthquakes[J]. Northwestern Seismological Journal,2002,24(3):257 − 261. (in Chinese with English abstract)

    [18]

    张昭栋, 郑金涵, 张广城, 等. 承压井水位对气压动态过程的响应[J]. 地球物理学报,1989,32(5):539 − 549. [ZHANG Zhaodong, ZHENG Jinhan, ZHANG Guangcheng, et al. Response of water level of pressure well to dynamic process of barometric pressure[J]. Chinese Journal of Geophysics,1989,32(5):539 − 549. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5733.1989.05.006

    [19]

    张昭栋, 郑金涵, 耿杰, 等. 地下水潮汐现象的物理机制和统一数学方程[J]. 地震地质,2002,24(2):208 − 214. [ZHANG Zhaodong, ZHENG Jinhan, GENG Jie, et al. Physical mechanism and unitary mathematical equation for tidal phenomena of ground water[J]. Seismology and Geology,2002,24(2):208 − 214. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2002.02.008

    [20]

    齐丽军. 利用地下水水位波动提取地下水蒸发蒸腾和降雨入渗补给强度[D]. 西安: 长安大学, 2017.

    QI Lijun. Extraction of groundwater evapotranspiration and rainfall infiltration supplement intensity by groundwater level fluctuation [D]. Xi'an: Chang'an University, 2017. (in Chinese with English abstract)

    [21]

    CHENG D H, WANG Y H, DUAN J B, et al. A new analytical expression for ultimate specific yield and shallow groundwater drainage[J]. Hydrological Processes,2015,29(8):1905 − 1911. doi: 10.1002/hyp.10306

    [22]

    DAI A G, WANG J H. Diurnal and semidiurnal tides in global surface pressure fields[J]. Journal of the Atmospheric Sciences,1999,56(22):3874 − 3891. doi: 10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2

    [23]

    SCHILLING K E, KINIRY J R. Estimation of evapotranspiration by reed canary grass using field observations and model simulations[J]. Journal of Hydrology,2007,337(3/4):356 − 363.

    [24]

    BURT T P. Diurnal variations in stream discharge and through flow during a period of low flow[J]. Journal of Hydrology,1979,41(3/4):291 − 301.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  687
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2020-03-05
修回日期:  2020-05-20
刊出日期:  2021-03-15

目录