基于孔隙面积比的麦秸秆防腐分析及秸秆对粉土抗剪强度的影响

彭丽云, 李朝成, 刘铭杰, 崔长泽. 基于孔隙面积比的麦秸秆防腐分析及秸秆对粉土抗剪强度的影响[J]. 水文地质工程地质, 2021, 48(1): 171-180. doi: 10.16030/j.cnki.issn.1000-3665.202005050
引用本文: 彭丽云, 李朝成, 刘铭杰, 崔长泽. 基于孔隙面积比的麦秸秆防腐分析及秸秆对粉土抗剪强度的影响[J]. 水文地质工程地质, 2021, 48(1): 171-180. doi: 10.16030/j.cnki.issn.1000-3665.202005050
PENG Liyun, LI Zhaocheng, LIU Mingjie, CUI Changze. Wheat straw anticorrosion analysis based on pore area ratio and the effect of straw on the shear strength of silty soil[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 171-180. doi: 10.16030/j.cnki.issn.1000-3665.202005050
Citation: PENG Liyun, LI Zhaocheng, LIU Mingjie, CUI Changze. Wheat straw anticorrosion analysis based on pore area ratio and the effect of straw on the shear strength of silty soil[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 171-180. doi: 10.16030/j.cnki.issn.1000-3665.202005050

基于孔隙面积比的麦秸秆防腐分析及秸秆对粉土抗剪强度的影响

  • 基金项目: 国家自然科学基金项目资助(41772291);北京建筑大学教改项目资助(Y1827)
详细信息
    作者简介: 彭丽云(1979-),女,博士,副教授,主要从事特殊岩土体加固和处理等教学和研究工作。E-mail: pengliyun@bucea.edu.cn
  • 中图分类号: TU411.7

Wheat straw anticorrosion analysis based on pore area ratio and the effect of straw on the shear strength of silty soil

  • 粉土性能不良,需改良后才能在高速公路路基中使用;麦秸秆环保可再生,掺入粉土会起到加筋作用,但自身易被水腐蚀,需防腐后才能使用。本文从孔隙面积比出发,分析聚乙烯醇对秸秆的防腐机理和防腐效果,通过抗拉强度试验分析防腐对秸秆抗拉强度的影响;通过直剪试验分析秸秆对粉土抗剪强度的影响。结果表明:聚乙烯醇通过自身防腐性能的发挥、填充麦秸秆孔隙减小吸水通路、在秸秆表面形成保护膜阻隔水分进入来实现防腐,孔隙面积比越小防腐效果越好;试验范围内,麦秸秆的防腐最佳浸泡时间为4 d,防腐剂最佳溶液浓度为10%,此时秸秆孔隙面积比最小,且防腐耗时最短,或经济最优。麦秸秆长度对孔隙面积比的影响主要在4 d内,与最终孔隙面积比关系不大。防腐麦秸秆抗拉强度提高。秸秆加筋土的黏聚力随秸秆掺量、麦秸秆长度的增加先增大后减小,最优掺量范围为0.4%~0.6%,最优秸秆长度为15 mm;内摩擦角随着秸秆掺量的增加略有增加,但增幅很小,不同长度下无明显规律。

  • 加载中
  • 图 1  麦秸秆孔隙构造微观图(225倍)

    Figure 1. 

    图 2  麦秸秆孔隙面积比二值化分析图

    Figure 2. 

    图 3  麦秸秆浸泡不同天数后的二值化图(l=10 mm,c=10%,225倍)

    Figure 3. 

    图 4  麦秸秆孔隙面积比随浸泡时间变化曲线(l=10 mm,c=10%)

    Figure 4. 

    图 5  不同浓度下麦秸秆孔隙面积比与浸泡时间关系(l=20 mm)

    Figure 5. 

    图 6  浸泡时间/孔隙面积比和浸泡时间关系

    Figure 6. 

    图 7  不同长度下,麦秸秆孔隙面积比和浸泡时间关系(c=10%)

    Figure 7. 

    图 8  半对数坐标系下孔隙面积比和浸泡时间关系(l=30 mm)

    Figure 8. 

    图 9  常温常压、浸水、防腐后浸水麦秸秆孔隙面积比变化(l=10 mm)

    Figure 9. 

    图 10  麦秸秆极限拉力变化曲线

    Figure 10. 

    图 11  素土、0.2%、0.4%、0.6%、0.8%掺量土样

    Figure 11. 

    图 12  不同长度、秸秆掺量下粉土抗剪强度指标变化曲线

    Figure 12. 

    表 1  颗粒粒径组成

    Table 1.  Particle size composition

    粒径/mm 5~2 2~0.5 0.5~0.25 0.25~0.075 0.075~0.005 ≤0.005
    含量/% 1.74 1.86 1.21 2.12 92.88 0.19
    下载: 导出CSV

    表 2  基于材料和时间因素的麦秸秆孔隙面积比测定

    Table 2.  Wheat straw pore area ratio determination based on material and time factors

    麦秸秆长度l/mm 浸泡麦秸秆质量m/g 取用麦秸秆根数n 防腐剂溶液浓度c/% 溶液体积v/mL 浸泡时间t/d
    20 10 5 4,6,8,10,12 900 1,2,3,4,5,6,7
    10,15,20,30 10 5 试验测得的最佳浓度 900 1,2,3,4,5,6,7
      说明:为减小误差,对浸泡聚乙烯醇溶液中的麦秸秆,在规定浸泡天数后每次均取出5根,在40 ℃的温度下烘干10 h去除少量水分的影响后,对5根分别进行孔隙面积比测定并取均值,以下秸秆孔隙面积比的测定也采用了同样的方法。
    下载: 导出CSV

    表 3  不同浓度下公式(1)拟合后的参数值

    Table 3.  Parameter values at different concentrations

    浓度参数 4% 6% 8% 10% 12%
    a −0.2427 −0.32263 −0.35864 −0.54855 −0.39861
    b 1.97152 2.16722 2.39111 2.75855 2.79711
    R2 0.99935 0.99895 0.99891 0.99794 0.9989
    下载: 导出CSV

    表 4  不同长度下0~4 d范围内的曲线拟合参数

    Table 4.  Curve fitting parameters in the range of 0 to 4 days under different lengths

    长度参数/mm 10 15 20 30
    p 4.08234 4.11608 4.14074 4.18001
    q −0.13241 −0.13569 −0.13679 −0.14072
    R2 0.84911 0.92447 0.96535 0.99782
    下载: 导出CSV
  • [1]

    张笑峰, 张艳美, 刘锦程, 等. 纤维与粉煤灰改良粉土的正交试验分析[J]. 水利与建筑工程学报,2019,17(1):36 − 40. [ZHANG Xiaofeng, ZHANG Yanmei, LIU Jincheng, et al. Orthogonal test analysis of improved silt with fiber and fly ash[J]. Journal of Water Resources Architectural Engineering,2019,17(1):36 − 40. (in Chinese with English abstract)

    [2]

    肖军华. 循环荷载下路基压实粉土的临界应力与应变水平[J]. 水文地质工程地质,2010,37(5):61 − 66. [XIAO Junhua. The threshold stress and strain levels of compacted silt under repeated loadings[J]. Hydrogeology & Engineering Geology,2010,37(5):61 − 66. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.05.011

    [3]

    谭毓清, 彭成, 田宗坤. 石灰改良路基填料的动力特性试验研究[J]. 南华大学学报(自然科学版),2020,34(1):81 − 87. [TAN Yuqing, PENG Cheng, TIAN Zongkun. Experimental study of dynamic characteristics of lime modified roadbed filler[J]. Journal of University of South China (Science and Technology),2020,34(1):81 − 87. (in Chinese with English abstract)

    [4]

    潘望文. 水泥改良黏性土的循环动力特性[J]. 湖南理工学院学报(自然科学版),2020,33(1):38 − 43. [PAN Wangwen. Dynamic characteristics of cement-improved cohesive soil under cyclic loading[J]. Journal of Hunan Institute of Science and Technology (Natural Sciences),2020,33(1):38 − 43. (in Chinese with English abstract)

    [5]

    张沛云, 马学宁. 水泥改良黄土路基动力稳定性评价参数试验研究[J]. 水文地质工程地质,2019,46(2):141 − 147. [ZHANG Peiyun, MA Xuening. An experimental study of the evaluation parameters of dynamic stability of the cement-improved loess subgrade[J]. Hydrogeology & Engineering Geology,2019,46(2):141 − 147. (in Chinese with English abstract)

    [6]

    李国勋, 张艳美, 马丁, 等. 纤维对纳米二氧化硅石灰改良粉土力学性质的影响[J]. 土木与环境工程学报(中英文),2020(2):37 − 44. [LI Guoxun, ZHANG Yanmei, MA D, et al. Mechanical properties of nano-silica and lime stabilized silt reinforced by fiber[J]. Journal of Civil and Environmental Engineering,2020(2):37 − 44. (in Chinese with English abstract)

    [7]

    KHATTAK M J, ALRASHIDI M. Durability and mechanistic characteristics of fiber reinforced soil-cement mixtures[J]. International Journal of Pavement Engineering,2006,7(1):53 − 62. doi: 10.1080/10298430500489207

    [8]

    YETIMOGLU T, SALBAS O. A study on shear strength of sands reinforced with randomly distributed discrete fibers[J]. Geotextiles and Geomembranes,2003,21(2):103 − 110. doi: 10.1016/S0266-1144(03)00003-7

    [9]

    KUMAR A, WALIA B S, MOHAN J. Compressive strength of fiber reinforced highly compressible clay[J]. Construction and Building Materials,2006,20(10):1063 − 1068. doi: 10.1016/j.conbuildmat.2005.02.027

    [10]

    陈轮, 李广信. 纤维加筋粘性土的抗拉和抗裂性能研究[J]. 地基处理,1992(2):25 − 31. [CHEN Lun, LI Guangxin. Research on tensile and crack resistance of fiber reinforced clay[J]. Ground Improvement,1992(2):25 − 31. (in Chinese)

    [11]

    唐朝生, 施斌, 刘春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报,2007,38(10):1186 − 1193. [TANG Chaocheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering,2007,38(10):1186 − 1193. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2007.10.006

    [12]

    李广信, 陈轮, 郑继勤, 等. 纤维加筋粘性土的试验研究[J]. 水利学报,1995,26(6):31 − 36. [LI Guangxin, CHEN Lun, ZHENG Jiqin, et al. Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering,1995,26(6):31 − 36. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.1995.06.005

    [13]

    郝建斌, 魏兴梅, 姚婕, 等. 麦秸秆加筋土的强度特性及细观结构分析[J]. 同济大学学报(自然科学版), 2019, 47(6):764 − 768.

    HAO Jianbin, WEI Xingmei, YAO Jie, et al. Strength characteristics and mesostructure of wheat straw reinforced soil[J]. Journal of Tongji University (Natural Science), 2019, 47(6):764 − 768. (in Chinese with English abstract)

    [14]

    刘阳. 麦秸秆加筋土强度特性及应用试验研究[D]. 西安: 长安大学, 2019.

    LIU Yang. Research on the strength characteristics and application of wheat straw reinforced soil[D]. Xi’an: Chang’an University, 2019.

    [15]

    沙琳川, 王桂尧, 张永杰, 等. 含水率与加筋率对加筋土抗剪强度的影响规律研究[J]. 水文地质工程地质,2018,45(2):51 − 58. [SHA Linchuan, WANG Guiyao, ZHANG Yongjie, et al. A study of influence of water content and reinforcement ratio on the shear strength of reinforced soil[J]. Hydrogeology & Engineering Geology,2018,45(2):51 − 58. (in Chinese with English abstract)

    [16]

    王桂尧, 沙琳川, 曹文贵, 等. 加筋率对稻秸秆加筋土开裂特性的试验研究[J]. 水文地质工程地质, 2017, 44(5): 52 − 58.

    WANG Guiyao, SHA Linchuan, CAO Wengui, et al. An experiment study of cracking properties of rice straw reinforced soil with different ratios[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 52 − 58. (in Chinese with English abstract)

    [17]

    白汉营, 高宇豪, 陈学军, 等. 纳米石墨粉红黏土改良机理试验研究[J]. 水文地质工程地质, 2018, 45(3): 86 − 92.

    BAI Hanying, GAO Yuhao, CHEN Xuejun, et al. An experimental study of the improving mechanical properties of the nano graphite powder red clay[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 86 − 92. (in Chinese with English abstract)

    [18]

    张齐齐, 王家鼎, 刘博榕, 等. 水泥改良土微观结构定量研究[J]. 水文地质工程地质,2015,42(3):92 − 96. [ZHANG Qiqi, WANG Jiading, LIU Borong, et al. Quantitative research on microstructure of modified soil with cement[J]. Hydrogeology & Engineering Geology,2015,42(3):92 − 96. (in Chinese with English abstract)

    [19]

    刘红光, 罗斌, 申士杰, 等. 秸秆建材的研究与发展现状概述[J]. 林业机械与木工设备,2019,47(5):4 − 12. [LIU Hongguang, LUO Bin, SHEN Shijie, et al. Review of research and development of straw building materials[J]. Forestry Machinery & Woodworking Equipment,2019,47(5):4 − 12. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-2953.2019.05.001

    [20]

    张继元. 简述生土建筑历史演变与建筑生态发展视域下引发创作的相关思考[J]. 居舍,2018(29):168. [ZHANG Jiyuan. A brief description of the historical evolution of the raw soil architecture and the related thinking of creation from the perspective of the development of architectural ecology[J]. Residence,2018(29):168. (in Chinese)

    [21]

    张虎元, 赵天宇, 王旭东. 中国古代土工建造方法[J]. 敦煌研究,2008(5):81 − 90. [ZHANG Huyuan, ZHAO Tianyu, WANG Xudong. Ancient Chinese geotechnical construction method[J]. Dunhuang Research,2008(5):81 − 90. (in Chinese) doi: 10.3969/j.issn.1000-4106.2008.05.015

    [22]

    张剑辉. 关中地区传统民居生土建造技术研究[D]. 西安: 长安大学, 2017.

    ZHANG Jianhui. Research on Construction Technology of Raw Soil for Traditional Residential Buildings in Guanzhong Area[D]. Xi’an: Chang’an University, 2017.

    [23]

    赵宜芊. 传统生土营建经验与土质特性的关联性研究[D]. 西安: 西安建筑科技大学, 2018.

    ZHAO Yiqian. Research on the correlation between traditional raw soil construction experience and soil characteristics [D]. Xi’an: Xi’an University of Architecture and Technology, 2018.

    [24]

    彭丽云, 王剑烨. 玉米秸秆防腐及其粉土加筋效果研究[J]. 工程地质学报,2017,25(1):132 − 138. [PENG Liyun, WANG Jianye. Experimental study on anti-corrosion of corn straw and its effect in silt improvement[J]. Journal of Engineering Geology,2017,25(1):132 − 138. (in Chinese with English abstract)

    [25]

    张毅, 汪明礼. 聚乙烯醇及其应用[J]. 黄山学院学报, 2004, 6(3): 71 − 74.

    ZHANG Yi, WANG Mingli. Polyvinyl alcohol and its application[J]. Journal of Huangshan University, 2004, 6(3): 71 − 74.(in Chinese)

    [26]

    王天华, 杨菲, 于凤琴, 等. 聚乙烯醇(PVA)市场分析与展望[J]. 山东化工,2016,45(2):49 − 50. [WANG Tianhua, YANG Fei, YU Fengqin, et al. Analysis and Prospect of Polyvinyl Alcohol (PVA) Market[J]. Shandong Chemical Industry,2016,45(2):49 − 50. (in Chinese) doi: 10.3969/j.issn.1008-021X.2016.02.015

    [27]

    吴春林. 聚乙烯醇薄膜的特性及应用[J]. 维纶通讯,2006(4):10 − 12. [WU Chunlin. Characteristics and applications of polyvinyl alcohol film[J]. Vinylon Communications,2006(4):10 − 12. (in Chinese)

  • 加载中

(12)

(4)

计量
  • 文章访问数:  669
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2020-05-29
修回日期:  2020-07-21
刊出日期:  2021-01-15

目录