深埋小净距多线平行盾构掘进相互作用分析

付钊, 柯宁静, 卢康明, 郭萧阳, 张孟喜. 深埋小净距多线平行盾构掘进相互作用分析[J]. 水文地质工程地质, 2021, 48(2): 44-54. doi: 10.16030/j.cnki.issn.1000-3665.202006009
引用本文: 付钊, 柯宁静, 卢康明, 郭萧阳, 张孟喜. 深埋小净距多线平行盾构掘进相互作用分析[J]. 水文地质工程地质, 2021, 48(2): 44-54. doi: 10.16030/j.cnki.issn.1000-3665.202006009
FU Zhao, KE Ningjing, LU Kangming, GUO Xiaoyang, ZHANG Mengxi. An analysis of interaction of deep buried close approaching multi-line parallel shield tunneling[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 44-54. doi: 10.16030/j.cnki.issn.1000-3665.202006009
Citation: FU Zhao, KE Ningjing, LU Kangming, GUO Xiaoyang, ZHANG Mengxi. An analysis of interaction of deep buried close approaching multi-line parallel shield tunneling[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 44-54. doi: 10.16030/j.cnki.issn.1000-3665.202006009

深埋小净距多线平行盾构掘进相互作用分析

  • 基金项目: 上海市市级科技重大专项资助课题(201SHZDZX02)
详细信息
    作者简介: 付钊(1995-),男,硕士生,研究方向为隧道与地下工程。E-mail: 921291423@qq.com
    通讯作者: 张孟喜(1963-),男,博士后,教授,博士生导师,主要从事隧道工程及地下结构研究。E-mail: mxzhang@i.shu.edu.cn
  • 中图分类号: U45;TU94+.2

An analysis of interaction of deep buried close approaching multi-line parallel shield tunneling

More Information
  • 浅覆软弱地层中小净距盾构隧道施工时,后行隧道施工显著影响先行隧道安全,但深埋情况下,由于地下岩土层的复杂性和不确定性,使得多线隧道施工时先行隧道的变形变得复杂。以上海硬X射线土建部分盾构隧道为背景,结合有限元数值模拟,分析了深埋小净距盾构隧道施工时的相互影响,并对不同的盾构参数进行了敏感性分析。研究表明:随着后行隧道的开挖,先行隧道管片的变形增量变化基本呈双峰特征。当采用左-右-中方式开挖时,管片变形增量呈一大一小双峰分布;而采用中-右-左方式时,管片竖向变形增量峰值的大小和方向相同,而水平变形增量的峰值相同,方向不同;随着浆液弹性模量的增加,管片竖向变形增量变化较大,水平变形增量基本不变;随着顶推力的增大,管片的变形也在相应地增大,并在支护应力比为0.6~0.7之间时达到稳定;地下水的存在对管片竖向变形有着一定的影响;通过对比2种开挖方式管片的变形收敛情况,选择左-右-中次序开挖比较安全。

  • 加载中
  • 图 1  硬X射线平行盾构工程平面图

    Figure 1. 

    图 2  小净距平行盾构隧道横剖面图(单位:m)

    Figure 2. 

    图 3  实际盾构掘进情况

    Figure 3. 

    图 4  开挖方式示意图

    Figure 4. 

    图 5  盾构开挖有限元模型

    Figure 5. 

    图 6  管片截面计算测点位置

    Figure 6. 

    图 7  地下水对管片变形的影响(工况1)(E=10 MPa,λ=0.7)

    Figure 7. 

    图 8  注浆弹性模量对管片变形的影响(工况1)(λ=0.7)

    Figure 8. 

    图 9  顶推力对管片变形的影响(工况1)(E=10 MPa)

    Figure 9. 

    图 10  地下水对管片变形的影响(工况2)(E=10 MPa, λ=0.7)

    Figure 10. 

    图 11  注浆层弹性模量对管片变形的影响(工况2)(λ=0.7)

    Figure 11. 

    图 12  顶推力对管片变形的影响(工况2)(E=10 MPa)

    Figure 12. 

    图 13  隧道无地下水时管片收敛变形

    Figure 13. 

    表 1  土体物理力学参数

    Table 1.  Mechanical parameters of soils

    土层 层厚/m 重度/(kN·m−3 黏聚力/kPa 内摩擦角/(°) 弹性模量/MPa 泊松比 渗透系数/(cm·s−1
    11.0 17.7 16 14.0 32.14 0.40 6×10−7
    8.0 16.8 16 9.5 19.92 0.40 1×10−8
    1 1.7 17.7 20 13.5 34.68 0.40 1×10−8
    2 5.3 18.1 12 21.5 57.23 0.35 3×10−6
    4 14.6 19.8 43 15.5 46.82 0.40 1×10−8
    1 6.4 18.9 4 31.0 94.87 0.30 8×10−6
    2 15.0 19.3 3 33.0 116.37 0.30 1×10−5
    下载: 导出CSV

    表 2  不同工况下管片收敛变形

    Table 2.  Convergence deformation of segments under different conditions /mm

    工况 竖向变形 水平变形
    顶部点(A) 底部点(D) 收敛值 左侧点(B) 右侧点(C) 收敛值
    工况1 无地下水 −0.43 −0.36 −0.07 1.54 1.62 0.08
    有地下水 −1.06 −0.95 −0.11 2.01 2.09 0.08
    工况2 无地下水 0.16 0.26 −0.10 −0.07 −0.15 0.08
    有地下水 −1.18 −1.00 −0.18 0.10 0.20 0.10
      注:收敛变形,“+”表示外扩,“−”表示内收。
    下载: 导出CSV
  • [1]

    刘大刚, 陶德敬, 王明年. 地铁双隧道施工引起地表沉降及变形的随机预测方法[J]. 岩土力学,2008,29(12):3422 − 3426. [LIU Dagang, TAO Dejing, WANG Mingnian. Stochastic method for predicting ground surface settlement and deformation induced by metro double tube tunneling[J]. Rock and Soil Mechanics,2008,29(12):3422 − 3426. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.12.045

    [2]

    陈春来, 赵城丽, 魏纲, 等. 基于Peck公式的双线盾构引起的土体沉降预测[J]. 岩土力学,2014,35(8):2212 − 2218. [CHEN Chunlai, ZHAO Chenli, WEI Gang, et al. Prediction of soil settlement induced by double-line shield tunnel based on Peck formula[J]. Rock and Soil Mechanics,2014,35(8):2212 − 2218. (in Chinese with English abstract)

    [3]

    魏纲, 周杨侃. 双线平行盾构开挖引起的地表沉降随机介质预测[J]. 现代隧道技术,2016,53(5):92 − 99. [WEI Gang, ZHOU Yangkan. Stochastic medium prediction for ground settlement induced by double-line parallel shield tunnelling[J]. Modern Tunnelling Technology,2016,53(5):92 − 99. (in Chinese with English abstract)

    [4]

    FU J Y, YANG J S, YAN L, et al. An analytical solution for deforming twin-parallel tunnels in an elastic half plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2015,39(5):524 − 538.

    [5]

    YANG X L, WANG J M. Ground movement prediction for tunnels using simplified procedure[J]. Tunnelling and Underground Space Technology,2011,26(3):462 − 471.

    [6]

    SUWANSAWAT S, EINSTEIN H H. Describing settlement troughs over twin tunnels using a superposition technique[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(4):445 − 468.

    [7]

    苑绍东, 杨林, 黄舰. 并行隧道工程中后行隧道分步开挖对先行隧道横纵向地表沉降的影响研究[J]. 现代隧道技术,2018,55(6):80 − 86. [YUAN Shaodong, YANG Lin, HUANG Jian. Effect of sequential excavation of the second tunnel tube on transverse and longitudinal ground settlements of the first tunnel tube in parallel tunnels[J]. Modern Tunnelling Technology,2018,55(6):80 − 86. (in Chinese with English abstract)

    [8]

    陶连金, 孙斌, 李晓霖. 超近距离双孔并行盾构施工的相互影响分析[J]. 岩石力学与工程学报,2009,28(9):1856 − 1862. [TAO Lianjin, SUN Bin, LI Xiaolin. Interaction analysis of double holes extremely close approaching parallel shield tunnels construction[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1856 − 1862. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.09.017

    [9]

    卢健, 姚爱军, 郑轩, 等. 地铁双线隧道开挖地表沉降规律及计算方法研究[J]. 岩石力学与工程学报,2019,38(增刊 2):3735 − 3747. [LU Jian, YAO Aijun, ZHENG Xuan, et al. Study on the law and computational method of ground surface settlement induced by double-line tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(Sup 2):3735 − 3747. (in Chinese with English abstract)

    [10]

    白云, 戴志仁, 徐飞, 等. 后掘盾构越先掘盾构对地层变形的影响研究[J]. 土木工程学报,2011,44(2):128 − 135. [BAI Yun, DAI Zhiren, XU Fei, et al. Study of the influence of one shield passing another on ground deformation for construction of parallel tunnels[J]. China Civil Engineering Journal,2011,44(2):128 − 135. (in Chinese with English abstract)

    [11]

    赵文, 纪新博, 李慎刚, 等. 平行隧道施工引起地表沉降的数值试验研究[J]. 东北大学学报(自然科学版),2013,34(3):439 − 443. [ZHAO Wen, JI Xinbo, LI Shengang, et al. Numerical experiment studies on ground settlement during the parallel tunnels construction[J]. Journal of Northeastern University (Natural Science),2013,34(3):439 − 443. (in Chinese with English abstract)

    [12]

    王帅帅, 高波, 全晓娟, 等. 不同地质条件下浅埋偏压小净距隧道围岩稳定性研究[J]. 水文地质工程地质,2014,41(3):60 − 65. [WANG Shuaishuai, GAO Bo, QUAN Xiaojuan, et al. A study of the surrounding rock stability of bias small-interval tunnel in different rock strata[J]. Hydrogeology & Engineering Geology,2014,41(3):60 − 65. (in Chinese with English abstract)

    [13]

    张孟喜, 张靖, 吴应明, 等. 全风化岩层中双线盾构上穿近邻地铁隧道影响分析[J]. 土木工程学报,2019,52(9):100 − 108. [WANG Shuaishuai, GAO Bo, QUAN Xiaojuan, et al. Analysis of double-line shield tunnel over-crossing subway tunnel in completely weathered rock formation[J]. China Civil Engineering Journal,2019,52(9):100 − 108. (in Chinese with English abstract)

    [14]

    GUO D L, ZHAO D S. Analysis based on FLAC3D of surface subsidence caused by a double-tube parallel tunnel excavation[J]. Applied Mechanics and Materials,2013,395/396:443 − 446.

    [15]

    缪林昌, 王非, 吴宏伟, 等. 平行盾构开挖离心机模拟试验研究[J]. 岩土工程学报,2017,39(2):373 − 379. [MIAO Linchang, WANG Fei, WU Hongwei, et al. Centrifugal model tests on excavation of twin parallel tunnels[J]. Chinese Journal of Geotechnical Engineering,2017,39(2):373 − 379. (in Chinese with English abstract) doi: 10.11779/CJGE201702023

    [16]

    HE C, FENG K, FANG Y, et al. Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata[J]. Journal of Zhejiang University SCIENCE A,2012,13(11):858 − 869.

    [17]

    顾其波, 郑荣跃, 杨芬, 等. 宁波软土盾构隧道施工地表沉降分析[J]. 水文地质工程地质,2016,43(1):85 − 93. [GU Qibo, ZHENG Rongyue, YANG Fen, et al. An analysis of the surface settlement in the shield construction on the Ningbo urban rail transit[J]. Hydrogeology & Engineering Geology,2016,43(1):85 − 93. (in Chinese with English abstract)

    [18]

    刘书斌, 邓如勇, 方勇. 富水岩溶地层三车道公路隧道二次衬砌受荷特征研究[J]. 水文地质工程地质,2016,43(6):74 − 80. [LIU Shubin, DENG Ruyong, FANG Yong. Research on the mechanical behavior of the secondary lining of a 3-lanes highway tunnel in the water-rich karst strata[J]. Hydrogeology & Engineering Geology,2016,43(6):74 − 80. (in Chinese with English abstract)

    [19]

    CHEN R P, ZHU J, LIU W, et al. Ground movement induced by parallel EPB tunnels in silty soils[J]. Tunnelling and Underground Space Technology,2011,26(1):163 − 171.

    [20]

    王明年, 李志业, 关宝树. 3孔小间距浅埋暗挖隧道地表沉降控制技术研究[J]. 岩土力学,2002,23(6):821 − 824. [WANG Mingnian, LI Zhiye, GUAN Baoshu. Research on controlling measures for ground surface settlement of three little distance parallel shallow embedded tunnels[J]. Rock and Soil Mechanics,2002,23(6):821 − 824. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2002.06.039

    [21]

    陈越峰, 张庆贺, 张颖, 等. 近距离三线并行盾构隧道施工实测分析[J]. 地下空间与工程学报,2008,4(2):335 − 340. [CHEN Yuefeng, ZHANG Qinghe, ZHANG Ying, et al. In-situ monitoring and analyzing on construction of three closely spaced parallel pipe shield tunnels[J]. Chinese Journal of Underground Space and Engineering,2008,4(2):335 − 340. (in Chinese with English abstract)

    [22]

    赵建华. 三孔小净距隧洞下穿既有铁路施工开挖顺序研究[J]. 国防交通工程与技术,2016,14(4):7 − 10. [ZHAO Jianhua. A study of the excavation sequence for a three-pipe small-spaced tunnel under-crossing an existing railway[J]. Traffic Engineering and Technology for National Defence,2016,14(4):7 − 10. (in Chinese with English abstract)

  • 加载中

(13)

(2)

计量
  • 文章访问数:  1057
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2020-06-04
修回日期:  2020-09-22
刊出日期:  2021-03-15

目录