基于离心机和数值模拟的软硬互层反倾层状岩质边坡变形特征分析

李彦奇, 黄达, 孟秋杰. 基于离心机和数值模拟的软硬互层反倾层状岩质边坡变形特征分析[J]. 水文地质工程地质, 2021, 48(4): 141-150. doi: 10.16030/j.cnki.issn.1000-3665.202007062
引用本文: 李彦奇, 黄达, 孟秋杰. 基于离心机和数值模拟的软硬互层反倾层状岩质边坡变形特征分析[J]. 水文地质工程地质, 2021, 48(4): 141-150. doi: 10.16030/j.cnki.issn.1000-3665.202007062
LI Yanqi, HUANG Da, MENG Qiujie. An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 141-150. doi: 10.16030/j.cnki.issn.1000-3665.202007062
Citation: LI Yanqi, HUANG Da, MENG Qiujie. An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 141-150. doi: 10.16030/j.cnki.issn.1000-3665.202007062

基于离心机和数值模拟的软硬互层反倾层状岩质边坡变形特征分析

  • 基金项目: 国家自然科学基金面上项目(41672300)
详细信息
    作者简介: 李彦奇(1988-),男,博士研究生,主要从事滑坡灾害治理方面的学习和研究。E-mail: 57492858@qq.com
    通讯作者: 黄达(1976-),男,教授,博士生导师,主要从事滑坡灾害治理方面的研究工作。E-mail: dahuang@hebut.edu.cn
  • 中图分类号: P642.2

An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation

More Information
  • 我国西部山区建设揭露了众多大型弯曲倾倒变形体,它们多具有软硬互层结构。为进一步探明软硬互层反倾岩质边坡的变形破坏规律,本研究融合大型土工离心机试验与自开发的可以综合考虑节理面拉剪和压剪破坏的Hoek-Brown与Mohr-Coulomb联合强度准则,对此类边坡进行试验与数值模拟分析。首先,结合监测点位移和应力曲线对边坡的变形破坏过程进行详述并验证了所提出的强度准则及所建立的数值模型的正确性;然后,基于此数值模型研究不同几何因素对此类边坡倾倒破坏特征的影响。结果表明:(1)节理单元采用Hoek-Brown与Mohr-Coulomb联合强度准则可以较准确地模拟软硬互层反倾边坡的层间错动以及岩层弯折;(2)此类坡体倾倒变形破坏全过程为:层间先出现相互错动,然后边坡自坡脚部位开始出现弯曲变形,随后坡体后缘出现拉张裂缝,与此同时边坡整体向临空面弯曲倾倒,最终形成2个或3个破坏面;(3)随着岩层倾角的增大,边坡一级破坏面逐渐向坡体深处发展;(4)随着硬/软岩层厚比的减小,坡顶竖向位移变小,且坡体滑动的整体性逐渐增强;(5)随着软/硬岩层厚比的增加,坡体破坏面逐渐由粗糙的“锯齿状”向平滑的“圆弧状”过渡。

  • 加载中
  • 图 1  模型及监测点信息

    Figure 1. 

    图 2  模型搭接方式及节理情况

    Figure 2. 

    图 3  F-DEM模型示意图

    Figure 3. 

    图 4  法向硬接触

    Figure 4. 

    图 5  局部坐标系

    Figure 5. 

    图 6  软硬互层反倾层状边坡数值模拟

    Figure 6. 

    图 7  监测点位移对比

    Figure 7. 

    图 8  层间法向压力监测曲线

    Figure 8. 

    图 9  数值模拟与试验对比

    Figure 9. 

    图 10  不同倾角下边坡最终破坏形态

    Figure 10. 

    图 11  不同倾角下边坡一级破坏面

    Figure 11. 

    图 12  不同岩层倾角下竖直位移

    Figure 12. 

    图 13  不同软/硬岩厚度比边坡最终破坏形态

    Figure 13. 

    图 14  不同软/硬岩层厚度比下坡顶竖直位移

    Figure 14. 

    表 1  原型材料与模型材料的物理力学参数

    Table 1.  Physico-mechanical parameters of the prototype and model materials

    岩石类别 模型类型 重度/
    (kN·m−3
    弹性模量/
    MPa
    泊松比 内摩擦角/
    (°)
    单轴抗压
    强度/MPa
    变质石英砂岩 原型 25.0 200 0.16 41.5 265.0
    模型 25.3 200 0.16 38.1 10.0
    强风化泥岩 原型 24.2 50 0.24 34.3 4.4
    模型 24.9 50 0.24 27.0 0.3
    下载: 导出CSV

    表 2  软硬岩相似材料最终配比

    Table 2.  Ratio of similar materials for hard and soft rocks

    石英砂 石膏 水泥 重晶石
    硬岩相似材料 1 0.600 0.050 0.400 0
    软岩相似材料 1 0.350 0.025 0.613 1
    下载: 导出CSV

    表 3  节理单元参数

    Table 3.  Joint element parameters

    弹性模量/
    MPa
    泊松比 黏聚力/
    kPa
    内摩擦角/
    (°)
    抗压强度/
    MPa
    m S
    层间节理 50 0.30 30 5 0.1 6.5 0.11
    硬岩节理 200 0.16 300 16 10.0 9.2 0.24
    软岩节理 80 0.24 100 18 0.3 7.4 0.14
    下载: 导出CSV

    表 4  实体单元参数

    Table 4.  Solid element parameters

    弹性模量/GPa 泊松比
    硬岩实体单元 200 0.16
    软岩实体单元 80 0.24
    下载: 导出CSV
  • [1]

    郑达, 毛峰, 王沁沅, 等. 上硬下软反倾边坡开挖变形响应的物理模拟[J]. 水文地质工程地质,2019,46(5):89 − 95. [ZHENG Da, MAO Feng, WANG Qinyuan, et al. Physical simulation of the excavation deformation response of counter-tilt slope with rigid layers on the soft[J]. Hydrogeology & Engineering Geology,2019,46(5):89 − 95. (in Chinese with English abstract)

    [2]

    王林峰, 陈洪凯, 唐红梅. 反倾岩质边坡破坏的力学机制研究[J]. 岩土工程学报,2013,35(5):884 − 889. [WANG Linfeng, CHEN Hongkai, TANG Hongmei. Mechanical mechanism of failure for anti-inclined rock slopes[J]. Chinese Journal of Geotechnical Engineering,2013,35(5):884 − 889. (in Chinese with English abstract)

    [3]

    马洪生, 庄卫林, 刘阳, 等. 顺层岩质边坡静力开挖物理模拟试验研究[J]. 水文地质工程地质,2016,43(3):37 − 43. [MA Hongsheng, ZHUANG Weilin, LIU Yang, et al. Physical excavation test research on a bedding rock slope[J]. Hydrogeology & Engineering Geology,2016,43(3):37 − 43. (in Chinese with English abstract)

    [4]

    HUANG R Q, LI W. Formation, distribution and risk control of landslides in China[J]. Journal of Rock Mechanics and Geotechnical Engineering,2012,2011(2):97 − 116.

    [5]

    黄润秋, 李渝生, 严明. 斜坡倾倒变形的工程地质分析[J]. 工程地质学报,2017,25(5):1165 − 1181. [HUANG Runqiu, LI Yusheng, YAN Ming. The implication and evaluation of toppling failure in engineering geology practice[J]. Journal of Engineering Geology,2017,25(5):1165 − 1181. (in Chinese with English abstract)

    [6]

    孙朝燚, 陈从新, 郑允, 等. 岩质反倾边坡复合倾倒破坏分析[J]. 湖南大学学报(自然科学版),2020,47(1):130 − 138. [SUN Chaoyan, CHEN Congxin, ZHENG Yun, et al. Analysis of anti-dip rock slopes against composite toppling failure[J]. Journal of Hunan University(Natural Sciences),2020,47(1):130 − 138. (in Chinese with English abstract)

    [7]

    邹丽芳, 徐卫亚, 宁宇, 等. 反倾层状岩质边坡倾倒变形破坏机理综述[J]. 长江科学院院报,2009,26(5):25 − 30. [ZOU Lifang, XU Weiya, NING Yu, et al. Overview of toppling failure mechanism of countertendency layered rock slopes[J]. Journal of Yangtze River Scientific Research Institute,2009,26(5):25 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5485.2009.05.007

    [8]

    ADHIKARY D P, DYSKIN A V, JEWELL R J, et al. A study of the mechanism of flexural toppling failure of rock slopes[J]. Rock Mechanics and Rock Engineering,1997,30(2):75 − 93. doi: 10.1007/BF01020126

    [9]

    郑达, 王沁沅, 毛峰, 等. 反倾层状岩质边坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J]. 岩石力学与工程学报,2019,38(10):1954 − 1963. [ZHENG Da, WANG Qinyuan, MAO Feng, et al. Centrifuge model test study on the key hazard-inducing factors of deep toppling deformation and disaster patterns of counter-tilt layered rock slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):1954 − 1963. (in Chinese with English abstract)

    [10]

    黄波林, 陈小婷, 彭轩明. 三峡库区巫山县廖家坪危岩体倾倒机制数值模拟分析[J]. 水文地质工程地质,2008,35(5):24 − 27. [HUANG Bolin, CHEN Xiaoting, PENG Xuanming. Liaojiaping dangerous rockmass toppling numerical analysis in Wushan County in the Three Gorges Reservoir Region[J]. Hydrogeology & Engineering Geology,2008,35(5):24 − 27. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.05.006

    [11]

    黄润秋, 唐世强. 某倾倒边坡开挖下的变形特征及加固措施分析[J]. 水文地质工程地质,2007,34(6):49 − 54. [HUANG Runqiu, TANG Shiqiang. On the deformation characteristics and reinforcement measures of a toppling slope under excavation[J]. Hydrogeology & Engineering Geology,2007,34(6):49 − 54. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.06.012

    [12]

    白洁, 巨能攀, 张成强, 等. 苗尾水电站赵子坪岸坡变形失稳的地下水动力作用分析[J]. 水文地质工程地质,2019,46(4):159 − 166. [BAI Jie, JU Nengpan, ZHANG Chengqiang, et al. Dynamic analyses of groundwater on the deformation and instability of the Zhaoziping bank slope near the Miaowei Hydropower Station[J]. Hydrogeology & Engineering Geology,2019,46(4):159 − 166. (in Chinese with English abstract)

    [13]

    姚文敏, 胡斌, 余海兵, 等. 三维软硬互层边坡的破坏模式与稳定性研究[J]. 工程科学学报,2017,39(2):182 − 189. [YAO Wenmin, HU Bin, YU Haibing, et al. Numerical analysis of the failure modes and stability of 3D slopes with interbreeding of soft and hard rocks[J]. Chinese Journal of Engineering,2017,39(2):182 − 189. (in Chinese with English abstract)

    [14]

    王霄, 陈志坚, 徐进鹏, 等. 似层状岩质边坡倾倒变形破坏过程数值模拟[J]. 水文地质工程地质,2018,45(1):137 − 143. [WANG Xiao, CHEN Zhijian, XU Jinpeng, et al. Numerical simulation of deformation and failure process of a toppling-sliding rock slope with a quasi-lamellar structure[J]. Hydrogeology & Engineering Geology,2018,45(1):137 − 143. (in Chinese with English abstract)

    [15]

    KARAMI A, STEAD D. Asperity degradation and damage in the direct shear test: a hybrid FEM/DEM approach[J]. Rock Mechanics and Rock Engineering,2008,41(2):229 − 266. doi: 10.1007/s00603-007-0139-6

    [16]

    陈小婷, 黄波林. FEM/DEM法在典型柱状危岩体破坏过程数值分析中的应用[J]. 水文地质工程地质,2018,45(4):137 − 141. [CHEN Xiaoting, HUANG Bolin. Application of the FEM /DEM method to numerical analyses of the failure process of representative pillar-shape dangerous rockmass[J]. Hydrogeology & Engineering Geology,2018,45(4):137 − 141. (in Chinese with English abstract)

    [17]

    刘郴玲, 常晓林, 唐龙文, 等. 基于重力增加法的边坡失稳破坏全过程模拟[J]. 长江科学院院报,2018,35(9):133 − 138. [LIU Chenling, CHANG Xiaolin, TANG Longwen, et al. Simulation of the whole process of slope failure based on gravity increase method[J]. Journal of Yangtze River Scientific Research Institute,2018,35(9):133 − 138. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170376

    [18]

    程东幸, 刘大安, 丁恩保, 等. 层状反倾岩质边坡影响因素及反倾条件分析[J]. 岩土工程学报,2005,27(11):127 − 131. [CHENG Dongxing, LIU Da’an, DING Enbao, et al. Analysis on influential factors and toppling conditions of toppling rock slope[J]. Chinese Journal of Geotechnical Engineering,2005,27(11):127 − 131. (in Chinese with English abstract)

    [19]

    HUANG D, LI B, MA W Z, et al. Effects of bedding planes on fracture behavior of sandstone under semi-circular bending test[J]. Theoretical and Applied Fracture Mechanics,2020:102625.

    [20]

    黄达, 张永发, 朱谭谭, 等. 砂岩拉-剪力学特性试验研究[J]. 岩土工程学报,2019,41(2):272 − 276. [HUANG Da, ZHANG Yongfa, ZHU Tantan, et al. Experimental study on tension-shear mechanical behavior of sandstone[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):272 − 276. (in Chinese with English abstract)

    [21]

    E·霍克, 卢平(译). 利用霍克-布朗破坏准则估算莫尔-库伦准则的摩擦角和粘聚力[J]. 有色金属科学与工程,1992(3):175 − 177. [E HOEK, LU Ping(trans). Estimation of friction Angle and cohesion of Mohr-Coulomb Criterion by Hawk-Brown failure Criterion[J]. Jiangxi Nonferrous Metals,1992(3):175 − 177. (in Chinese)

  • 加载中

(14)

(4)

计量
  • 文章访问数:  1925
  • PDF下载数:  129
  • 施引文献:  0
出版历程
收稿日期:  2020-07-24
修回日期:  2020-09-21
刊出日期:  2021-07-15

目录