Research on 3D mechanical properties of sludge solidified soil under the action of drying and wetting cycles
-
摘要:
采用自主研发的新型固化剂对天津城市污泥进行固化处理,通过GCTS真三轴仪对污泥固化土进行不固结不排水试验,探讨其在干湿循环作用下的应力-应变特征和强度指标变化规律。试验结果表明:污泥固化土应力-应变曲线在初始阶段近似表现为线性关系,同等条件下,破坏应力随中主应力比b的增大而增大;相同b值下,破坏应力随干湿循环次数的增大而逐渐减小。经过干湿循环1,3,5,7,10次之后,不同围压下污泥固化土的破坏应力值均呈现下降趋势。当循环次数超过5次后,其降低幅度趋于平缓。在b值较小、循环次数小于3时,应力-应变曲线产生应变软化现象,随着围压和b值的增大表现为硬化型。污泥固化土c、φ值随干湿循环次数的增大呈现出降低趋势,并最终趋于稳定。在此基础上,对不同中主应力比条件下的c、φ值变化规律进行分析,分别建立其与干湿循环次数和中主应力比之间的关系式,并构建出能够考虑不同围压及中主应力比影响的初始弹性模量Ei和主应力差渐近值(σ1−σ3)ulti预测公式。
Abstract:A novel curing agent produced by our independent research and development is used to solidify the municipal sludge taken from Tianjin. GCTS true triaxial apparatus is used to conduct unconsolidated and undrained tests on the sludge solidified soil under different drying-wetting cycles. The stress-strain characteristics and strength index variation of the sludge solidified soil under drying-wetting cycles are investigated. The test results indicate that the stress-strain curve of the sludge solidified soil is approximately linear in the initial stage, and the failure stress increases with the increasing medium principal stress ratio b under the same conditions. At the same value of b, the failure stress decreases with the increasing number of drying-wetting cycles. After 1, 3, 5, 7 and 10 cycles, the failure stress values of the sludge solidified soil under different confining pressures all show the downward tendency. When the cycles are over 5 times, the reduction in the failure stress tends to be flat. When the value of b is small and the number of cycles is less than 3, strain softening occurs in the stress-strain curve, which appears as hardening with the increase of the confining pressure and the value of b. The values of c and φ of the sludge solidified soil show a decreasing trend with the increasing number of drying-wetting cycles, and finally tend to be stable. On this basis, the variation of values of c and φ under different principal stress ratios are analyzed, and the relationships between the values of c and φ and the number of drying-wetting cycles and the principal stress ratio are established respectively. Moreover, the prediction formula for the initial elastic modulus Ei and the asymptotic value of deviator stress (σ1−σ3)ulti which considers the influence of different confining pressures and the principal stress ratio is constructed.
-
-
表 1 正交试验因素和水平
Table 1. Factors and levels of the orthogonal test
水平 影响因素 A B C D E 1 20%:80% 25% 5% 0.2% 0.1% 2 25%:75% 30% 10% 0.3% 0.2% 3 30%:70% 35% 15% 0.4% 0.3% 4 35%:65% 40% 20% 0.5% 0.4% 5 40%:60% 45% 25% 0.6% 0.5% 注:固化剂主剂、固化剂辅剂和水的质量均按照污泥和干土总质量的百分比添加。 表 2 正交试验结果分析
Table 2. Analysis of the orthogonal test results
指标 影响因素 A B C D E S1 1 039.40 803.90 387.30 768.70 771.60 S2 893.20 837.80 513.20 773.70 593.90 S3 805.40 876.40 805.40 902.70 840.70 S4 737.20 781.90 1 159.10 838.70 795.70 S5 639.10 998.70 875.60 891.90 897.80 M1 207.88 160.78 77.46 153.74 154.32 M2 178.64 167.56 102.64 154.74 118.78 M3 161.08 175.28 161.08 180.54 168.14 M4 147.44 156.38 231.82 167.74 159.14 M5 127.82 199.74 175.12 178.38 179.56 极差R 80.06 43.36 154.36 26.80 60.78 表 3 不同中主应力比下的参数值
Table 3. Parameter values under different medium principal stress ratios
参数 b=0.00 b=0.25 b=0.50 b=0.75 b=1.00 A 4.298 4.412 4.803 5.067 5.278 B 2.808 3.389 3.818 4.261 4.430 D 23.165 23.896 25.637 26.350 26.677 R2 0.951 0.990 0.959 0.980 0.971 P 0.0225 0.0272 0.0283 0.0314 0.0323 S 1.1087 1.3929 1.6345 1.9064 2.0546 T 0.1992 0.1932 0.1862 0.1720 0.1576 R2 0.9744 0.9967 0.9815 0.9654 0.9942 表 4 ε1/(σ1−σ3)~ ε1关系曲线趋势线
Table 4. Tendency lines of the relationship between ε1/(σ1−σ3)and ε1
应力-应变曲线 围压/kPa 趋势线 R2 第一段 20 y= 0.105x+0.095 0.986 40 y= 0.089x+0.094 0.989 60 y= 0.078x+0.082 0.991 第二段 20 y= 0.23x−0.02 0.994 40 y= 0.19x+0.01 0.999 60 y= 0.17x+0.01 0.999 -
[1] 唐菠. 城市生活污水处理厂运行效能评价指标体系研究 [D]. 成都: 西南交通大学, 2014.
TANG Bo. Study on the evaluation index system of city sewage treatment plant operation efficiency [D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese with English abstract)
[2] 姜光辉, 李红春, 郭芳. 地下水污染场地水质空间相关性分析[J]. 水文地质工程地质,2017,44(2):137 − 143. [JIANG Guanghui, LI Hongchun, GUO Fang. Spatial variability of multi-tracers in groundwater contamination sites[J]. Hydrogeology & Engineering Geology,2017,44(2):137 − 143. (in Chinese with English abstract)
[3] VIEIRA R F, MORICONI W, PAZIANOTTO R A A. Residual and cumulative effects of soil application of sewage sludge on corn productivity[J]. Environmental Science and Pollution Research,2014,21(10):6472 − 6481. doi: 10.1007/s11356-014-2492-9
[4] 杨爱武, 胡垚, 杨少坤. 城市污泥新型固化技术及其力学特性[J]. 岩土力学,2019,40(11):4439 − 4449. [YANG Aiwu, HU Yao, YANG Shaokun. New solidification technology and mechanical properties of municipal sludge[J]. Rock and Soil Mechanics,2019,40(11):4439 − 4449. (in Chinese with English abstract)
[5] 李紫叶. 污泥固化剂的优化配制及其对污泥固化效果研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013.
LI Ziye. Study of optimized distribution of sludge curing agent and solidification effect of sludge [D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese with English abstract)
[6] ZHEN G, LU X, CHENG X, et al. Hydration process of the aluminate 12CaO·7Al2O3-assisted Portland cement-based solidification/stabilization of sewage sludge[J]. Construction and Building Materials,2012,30:675 − 681. doi: 10.1016/j.conbuildmat.2011.12.049
[7] SUN X, ZHU W, QIAN X, et al. Exploring cementitious additives for pretreatment of high-early-strength sewage sludge from the perspective of the rapid generation of nonevaporable water[J]. Journal of Materials in Civil Engineering,2014,26(5):878 − 885. doi: 10.1061/(ASCE)MT.1943-5533.0000899
[8] XIN D, CHAI X, ZHAO W. Hybrid cement-assisted dewatering, solidification and stabilization of sewage sludge with high organic content[J]. Journal of Material Cycles and Waste Management,2016,18(2):356 − 365. doi: 10.1007/s10163-014-0337-8
[9] CHEILAS A, KATSIOTI M, GEORGIADES A, et al. Impact of hardening conditions on to stabilized/solidified products of cement–sewage sludge–jarosite/alunite[J]. Cement and Concrete Composites,2007,29(4):263 − 269. doi: 10.1016/j.cemconcomp.2006.12.005
[10] 林城. 以膨润土为辅助添加剂固化/稳定化污泥的试验研究 [D]. 南京: 河海大学, 2007.
LIN Cheng. Study on cement-based solidification/stabilization of sludge using calcium-bentonite as additive [D]. Nanjing: Hohai University, 2007. (in Chinese with English abstract)
[11] 李磊, 朱伟, 林城, 等. 干湿循环条件下固化污泥的物理稳定性研究[J]. 岩土力学,2009,30(10):3001 − 3004. [LI Lei, ZHU Wei, LIN Cheng, et al. Study of wet and dry properties of solidified sludge[J]. Rock and Soil Mechanics,2009,30(10):3001 − 3004. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.10.019
[12] 易进翔, 王佩, 薛飞, 等. 市政污泥固化土填埋处置中的压缩特性研究[J]. 应用基础与工程科学学报,2016,24(1):139 − 147. [YI Jinxiang, WANG Pei, XUE Fei, et al. Study on compression properties of solidified municipal sludge in landfill disposal[J]. Journal of Basic Science and Engineering,2016,24(1):139 − 147. (in Chinese with English abstract)
[13] 吴炎, 夏雄, 朱春鹏, 等. 纸浆渣烧结灰(PS灰)和水泥固化污泥水力试验研究[J]. 工程地质学报,2019,27(4):753 − 759. [WU Yan, XIA Xiong, ZHU Chunpeng, et al. Experimental study on hydraulic test of sludge solidified with paper sludge ash (PS ash) and cement[J]. Journal of Engineering Geology,2019,27(4):753 − 759. (in Chinese with English abstract)
[14] CALLISTO L, CALABRESI G. Mechanical behaviour of a natural soft clay[J]. Géotechnique,1998,48(4):495 − 513.
[15] KIRKGARD M M, LADE P V. Anisotropic three-dimensional behavior of a normally consolidated clay[J]. Canadian Geotechnical Journal,1993,30(5):848 − 858. doi: 10.1139/t93-075
[16] 杨利国, 骆亚生, 王瑞瑞. 不同中主应力下压实黄土变形特性的真三轴试验研究[J]. 水文地质工程地质,2016,43(5):76 − 80. [YANG Liguo, LUO Yasheng, WANG Ruirui. True triaxial tests on the deformation characteristics of compacted loess with different intermediate principal stress[J]. Hydrogeology & Engineering Geology,2016,43(5):76 − 80. (in Chinese with English abstract)
[17] 左永振, 姜景山, 潘家军, 等. 粗粒料变形特性的大型真三轴试验研究[J]. 岩土工程学报,2019,41(增刊 2):37 − 40. [ZUO Yongzhen, JIANG Jingshan, PAN Jiajun, et al. Deformation characteristics of coarse granular materials in large-scale true triaxial tests[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup 2):37 − 40. (in Chinese with English abstract)
[18] 邓国华, 邵生俊. 基于真三轴试验的黄土结构性变化规律研究[J]. 岩土力学,2013,34(3):679 − 684. [DENG Guohua, SHAO Shengjun. Research on change structural characteristics of loess based on true triaxial tests[J]. Rock and Soil Mechanics,2013,34(3):679 − 684. (in Chinese with English abstract)
[19] 王云飞, 闫芙蓉, 焦华喆, 等. 重塑黏土真三轴试验强度特性及本构模型研究[J]. 地下空间与工程学报,2019,15(6):1674 − 1679. [WANG Yunfei, YAN Furong, JIAO Huazhe, et al. Experimental investigation on strength and constitutive model of remolded clay under true triaxial test[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1674 − 1679. (in Chinese with English abstract)
[20] 杨爱武, 胡垚, 王瑫, 等. 污泥固化剂及其应用、污泥固化土: 天津, CN106277663A [P]. 2017-01-04.
YANG Aiwu, HU Yao, WANG Tao, et al. Sludge curing agent, application thereof and sludge curing soil: Tianjin, CN106277663A [P]. 2017-01-04. (in Chinese)
[21] 杨爱武, 姜帅, 封安坤, 等. 固化轻质土在干湿循环及大变形条件下力学特性研究[J]. 水文地质工程地质,2020,47(3):93 − 100. [YANG Aiwu, JIANG Shuai, FENG Ankun, et al. A study of the mechanical properties of curing light soil under the condition of drying-wetting circles and large deformation[J]. Hydrogeology & Engineering Geology,2020,47(3):93 − 100. (in Chinese with English abstract)
-