干湿循环作用下污泥固化土三维力学特性研究

徐健, 赵绪, 马锐敏, 杨爱武, 杨少坤. 干湿循环作用下污泥固化土三维力学特性研究[J]. 水文地质工程地质, 2021, 48(3): 110-118. doi: 10.16030/j.cnki.issn.1000-3665.202007063
引用本文: 徐健, 赵绪, 马锐敏, 杨爱武, 杨少坤. 干湿循环作用下污泥固化土三维力学特性研究[J]. 水文地质工程地质, 2021, 48(3): 110-118. doi: 10.16030/j.cnki.issn.1000-3665.202007063
XU Jian, ZHAO Xu, MA Ruimin, YANG Aiwu, YANG Shaokun. Research on 3D mechanical properties of sludge solidified soil under the action of drying and wetting cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 110-118. doi: 10.16030/j.cnki.issn.1000-3665.202007063
Citation: XU Jian, ZHAO Xu, MA Ruimin, YANG Aiwu, YANG Shaokun. Research on 3D mechanical properties of sludge solidified soil under the action of drying and wetting cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 110-118. doi: 10.16030/j.cnki.issn.1000-3665.202007063

干湿循环作用下污泥固化土三维力学特性研究

  • 基金项目: 国家自然科学基金项目(51978440);天津市科技计划项目(19JCZDJC39700;2016CJ01)
详细信息
    作者简介: 徐健(1993-),男,硕士研究生,从事软土工程理论及技术研究。E-mail: jianxuchn@163.com
    通讯作者: 杨爱武 (1971-),男,博士,教授,博士生导师,从事软黏土力学特性及土体微观结构研究。E-mail: tulilab@163.com
  • 中图分类号: TU447

Research on 3D mechanical properties of sludge solidified soil under the action of drying and wetting cycles

More Information
  • 采用自主研发的新型固化剂对天津城市污泥进行固化处理,通过GCTS真三轴仪对污泥固化土进行不固结不排水试验,探讨其在干湿循环作用下的应力-应变特征和强度指标变化规律。试验结果表明:污泥固化土应力-应变曲线在初始阶段近似表现为线性关系,同等条件下,破坏应力随中主应力比b的增大而增大;相同b值下,破坏应力随干湿循环次数的增大而逐渐减小。经过干湿循环1,3,5,7,10次之后,不同围压下污泥固化土的破坏应力值均呈现下降趋势。当循环次数超过5次后,其降低幅度趋于平缓。在b值较小、循环次数小于3时,应力-应变曲线产生应变软化现象,随着围压和b值的增大表现为硬化型。污泥固化土cφ值随干湿循环次数的增大呈现出降低趋势,并最终趋于稳定。在此基础上,对不同中主应力比条件下的cφ值变化规律进行分析,分别建立其与干湿循环次数和中主应力比之间的关系式,并构建出能够考虑不同围压及中主应力比影响的初始弹性模量Ei和主应力差渐近值(σ1σ3ulti预测公式。

  • 加载中
  • 图 1  无侧限抗压强度与干湿循环次数间关系

    Figure 1. 

    图 2-1 

    图 2  不同围压时的应力-应变曲线

    Figure 2. 

    图 3  不同干湿循环次数下cφ值变化曲线

    Figure 3. 

    图 4  ε1/(σ1σ3)与ε1间关系曲线

    Figure 4. 

    图 5  ε1/(σ1σ3)~ ε1关系曲线的第一段(a)和第二段(b)

    Figure 5. 

    图 6  不同中主应力比下1/Ei和1/(σ1σ3ulti值变化曲线

    Figure 6. 

    图 7  1/Ei和1/(σ1σ3ulti试验值与预测值对比结果

    Figure 7. 

    表 1  正交试验因素和水平

    Table 1.  Factors and levels of the orthogonal test

    水平 影响因素
    A B C D E
    1 20%:80% 25% 5% 0.2% 0.1%
    2 25%:75% 30% 10% 0.3% 0.2%
    3 30%:70% 35% 15% 0.4% 0.3%
    4 35%:65% 40% 20% 0.5% 0.4%
    5 40%:60% 45% 25% 0.6% 0.5%
      注:固化剂主剂、固化剂辅剂和水的质量均按照污泥和干土总质量的百分比添加。
    下载: 导出CSV

    表 2  正交试验结果分析

    Table 2.  Analysis of the orthogonal test results

    指标 影响因素
    A B C D E
    S1 1 039.40 803.90 387.30 768.70 771.60
    S2 893.20 837.80 513.20 773.70 593.90
    S3 805.40 876.40 805.40 902.70 840.70
    S4 737.20 781.90 1 159.10 838.70 795.70
    S5 639.10 998.70 875.60 891.90 897.80
    M1 207.88 160.78 77.46 153.74 154.32
    M2 178.64 167.56 102.64 154.74 118.78
    M3 161.08 175.28 161.08 180.54 168.14
    M4 147.44 156.38 231.82 167.74 159.14
    M5 127.82 199.74 175.12 178.38 179.56
    极差R 80.06 43.36 154.36 26.80 60.78
    下载: 导出CSV

    表 3  不同中主应力比下的参数值

    Table 3.  Parameter values under different medium principal stress ratios

    参数 b=0.00 b=0.25 b=0.50 b=0.75 b=1.00
    A 4.298 4.412 4.803 5.067 5.278
    B 2.808 3.389 3.818 4.261 4.430
    D 23.165 23.896 25.637 26.350 26.677
    R2 0.951 0.990 0.959 0.980 0.971
    P 0.0225 0.0272 0.0283 0.0314 0.0323
    S 1.1087 1.3929 1.6345 1.9064 2.0546
    T 0.1992 0.1932 0.1862 0.1720 0.1576
    R2 0.9744 0.9967 0.9815 0.9654 0.9942
    下载: 导出CSV

    表 4  ε1/(σ1σ3)~ ε1关系曲线趋势线

    Table 4.  Tendency lines of the relationship between ε1/(σ1σ3)and ε1

    应力-应变曲线 围压/kPa 趋势线 R2
    第一段 20 y= 0.105x+0.095 0.986
    40 y= 0.089x+0.094 0.989
    60 y= 0.078x+0.082 0.991
    第二段 20 y= 0.23x−0.02 0.994
    40 y= 0.19x+0.01 0.999
    60 y= 0.17x+0.01 0.999
    下载: 导出CSV
  • [1]

    唐菠. 城市生活污水处理厂运行效能评价指标体系研究 [D]. 成都: 西南交通大学, 2014.

    TANG Bo. Study on the evaluation index system of city sewage treatment plant operation efficiency [D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese with English abstract)

    [2]

    姜光辉, 李红春, 郭芳. 地下水污染场地水质空间相关性分析[J]. 水文地质工程地质,2017,44(2):137 − 143. [JIANG Guanghui, LI Hongchun, GUO Fang. Spatial variability of multi-tracers in groundwater contamination sites[J]. Hydrogeology & Engineering Geology,2017,44(2):137 − 143. (in Chinese with English abstract)

    [3]

    VIEIRA R F, MORICONI W, PAZIANOTTO R A A. Residual and cumulative effects of soil application of sewage sludge on corn productivity[J]. Environmental Science and Pollution Research,2014,21(10):6472 − 6481. doi: 10.1007/s11356-014-2492-9

    [4]

    杨爱武, 胡垚, 杨少坤. 城市污泥新型固化技术及其力学特性[J]. 岩土力学,2019,40(11):4439 − 4449. [YANG Aiwu, HU Yao, YANG Shaokun. New solidification technology and mechanical properties of municipal sludge[J]. Rock and Soil Mechanics,2019,40(11):4439 − 4449. (in Chinese with English abstract)

    [5]

    李紫叶. 污泥固化剂的优化配制及其对污泥固化效果研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013.

    LI Ziye. Study of optimized distribution of sludge curing agent and solidification effect of sludge [D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese with English abstract)

    [6]

    ZHEN G, LU X, CHENG X, et al. Hydration process of the aluminate 12CaO·7Al2O3-assisted Portland cement-based solidification/stabilization of sewage sludge[J]. Construction and Building Materials,2012,30:675 − 681. doi: 10.1016/j.conbuildmat.2011.12.049

    [7]

    SUN X, ZHU W, QIAN X, et al. Exploring cementitious additives for pretreatment of high-early-strength sewage sludge from the perspective of the rapid generation of nonevaporable water[J]. Journal of Materials in Civil Engineering,2014,26(5):878 − 885. doi: 10.1061/(ASCE)MT.1943-5533.0000899

    [8]

    XIN D, CHAI X, ZHAO W. Hybrid cement-assisted dewatering, solidification and stabilization of sewage sludge with high organic content[J]. Journal of Material Cycles and Waste Management,2016,18(2):356 − 365. doi: 10.1007/s10163-014-0337-8

    [9]

    CHEILAS A, KATSIOTI M, GEORGIADES A, et al. Impact of hardening conditions on to stabilized/solidified products of cement–sewage sludge–jarosite/alunite[J]. Cement and Concrete Composites,2007,29(4):263 − 269. doi: 10.1016/j.cemconcomp.2006.12.005

    [10]

    林城. 以膨润土为辅助添加剂固化/稳定化污泥的试验研究 [D]. 南京: 河海大学, 2007.

    LIN Cheng. Study on cement-based solidification/stabilization of sludge using calcium-bentonite as additive [D]. Nanjing: Hohai University, 2007. (in Chinese with English abstract)

    [11]

    李磊, 朱伟, 林城, 等. 干湿循环条件下固化污泥的物理稳定性研究[J]. 岩土力学,2009,30(10):3001 − 3004. [LI Lei, ZHU Wei, LIN Cheng, et al. Study of wet and dry properties of solidified sludge[J]. Rock and Soil Mechanics,2009,30(10):3001 − 3004. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.10.019

    [12]

    易进翔, 王佩, 薛飞, 等. 市政污泥固化土填埋处置中的压缩特性研究[J]. 应用基础与工程科学学报,2016,24(1):139 − 147. [YI Jinxiang, WANG Pei, XUE Fei, et al. Study on compression properties of solidified municipal sludge in landfill disposal[J]. Journal of Basic Science and Engineering,2016,24(1):139 − 147. (in Chinese with English abstract)

    [13]

    吴炎, 夏雄, 朱春鹏, 等. 纸浆渣烧结灰(PS灰)和水泥固化污泥水力试验研究[J]. 工程地质学报,2019,27(4):753 − 759. [WU Yan, XIA Xiong, ZHU Chunpeng, et al. Experimental study on hydraulic test of sludge solidified with paper sludge ash (PS ash) and cement[J]. Journal of Engineering Geology,2019,27(4):753 − 759. (in Chinese with English abstract)

    [14]

    CALLISTO L, CALABRESI G. Mechanical behaviour of a natural soft clay[J]. Géotechnique,1998,48(4):495 − 513.

    [15]

    KIRKGARD M M, LADE P V. Anisotropic three-dimensional behavior of a normally consolidated clay[J]. Canadian Geotechnical Journal,1993,30(5):848 − 858. doi: 10.1139/t93-075

    [16]

    杨利国, 骆亚生, 王瑞瑞. 不同中主应力下压实黄土变形特性的真三轴试验研究[J]. 水文地质工程地质,2016,43(5):76 − 80. [YANG Liguo, LUO Yasheng, WANG Ruirui. True triaxial tests on the deformation characteristics of compacted loess with different intermediate principal stress[J]. Hydrogeology & Engineering Geology,2016,43(5):76 − 80. (in Chinese with English abstract)

    [17]

    左永振, 姜景山, 潘家军, 等. 粗粒料变形特性的大型真三轴试验研究[J]. 岩土工程学报,2019,41(增刊 2):37 − 40. [ZUO Yongzhen, JIANG Jingshan, PAN Jiajun, et al. Deformation characteristics of coarse granular materials in large-scale true triaxial tests[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup 2):37 − 40. (in Chinese with English abstract)

    [18]

    邓国华, 邵生俊. 基于真三轴试验的黄土结构性变化规律研究[J]. 岩土力学,2013,34(3):679 − 684. [DENG Guohua, SHAO Shengjun. Research on change structural characteristics of loess based on true triaxial tests[J]. Rock and Soil Mechanics,2013,34(3):679 − 684. (in Chinese with English abstract)

    [19]

    王云飞, 闫芙蓉, 焦华喆, 等. 重塑黏土真三轴试验强度特性及本构模型研究[J]. 地下空间与工程学报,2019,15(6):1674 − 1679. [WANG Yunfei, YAN Furong, JIAO Huazhe, et al. Experimental investigation on strength and constitutive model of remolded clay under true triaxial test[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1674 − 1679. (in Chinese with English abstract)

    [20]

    杨爱武, 胡垚, 王瑫, 等. 污泥固化剂及其应用、污泥固化土: 天津, CN106277663A [P]. 2017-01-04.

    YANG Aiwu, HU Yao, WANG Tao, et al. Sludge curing agent, application thereof and sludge curing soil: Tianjin, CN106277663A [P]. 2017-01-04. (in Chinese)

    [21]

    杨爱武, 姜帅, 封安坤, 等. 固化轻质土在干湿循环及大变形条件下力学特性研究[J]. 水文地质工程地质,2020,47(3):93 − 100. [YANG Aiwu, JIANG Shuai, FENG Ankun, et al. A study of the mechanical properties of curing light soil under the condition of drying-wetting circles and large deformation[J]. Hydrogeology & Engineering Geology,2020,47(3):93 − 100. (in Chinese with English abstract)

  • 加载中

(8)

(4)

计量
  • 文章访问数:  1601
  • PDF下载数:  62
  • 施引文献:  0
出版历程
收稿日期:  2020-07-25
修回日期:  2020-08-20
刊出日期:  2021-05-15

目录