-
摘要:
为研究Mg2+、Cl−和
${\rm{SO}}_4^{2-} $ ${\rm{SO}}_4^{2-} $ Abstract:In order to examine the effect of Mg2+, Cl− and
${\rm{SO}}_4^{2-} $ ${\rm{SO}}_4^{2-} $ -
Key words:
- soluble salt ions /
- salt-rich cement-soil /
- unconfined compressive tests /
- XRD /
- ESEM
-
表 1 连云港软土的物理性质指标
Table 1. Physical properties of the Lianyungang soft soil
物理性质指标 平均值 范围值 含水率w/% 63.70 49.20~81.40 密度ρ/(g·cm−3) 1.68 1.56~1.79 孔隙比e 1.87 1.43~2.19 液限WL/% 44.60 42.70~47.10 塑限WP/% 24.50 22.80~26.20 液性指数IL 1.95 1.31~2.65 塑性指数IP 20.10 19.70~21.60 表 2 连云港软土的力学性质指标
Table 2. Mechanical properties of the Lianyungang soft soil
压缩系数α0.1−0.2/MPa−1 压缩模量Es/MPa 抗剪强度 渗透系数 c/kPa φ/(°) kh/(m·s−1) k v/(m·s−1) 平均值 2.01 1.48 7.50 8.60 2.74e-9 3.29e-9 范围值 1.03~2.74 1.16~2.35 6.10~11.30 7.40~9.90 1.43e-9~5.36e-9 1.40e-9~8.42e-9 表 3 连云港软土和上海软土化学分析结果[7]
Table 3. Results of the chemical analysis of two different soft soils
测试项目 Ca2+/
(mg·kg−1)Mg2+/
(mg·kg−1)Cl−/
(mg·kg−1)/
(mg·kg−1)/
(mg·kg−1)pH值 CO2/
(mg·kg−1)连云港软土 656 5990 2960 3140 1240 7.43 45.70 上海软土 263 0 2128 79 963 7.74 150.80 表 4 普通硅酸盐水泥(P.O 32.5)的基本参数[15]
Table 4. Basic properties of ordinary portl and cement(P.O 32.5)
类别 烧失量/% MgO/% SO3/% 初凝时间/min 终凝时间/min 7 d抗压强度/MPa 比表面积/(m2·kg−1) 实测值 2.20 2.12 2.20 205 260 26.40 380 表 5 可溶性盐离子含量配比方案
Table 5. Experiment scheme of soluble salt ions
序号 Mg2+/(g·kg−1) Cl−/(g·kg−1) /(g·kg−1) 1# 2 0 0 2# 4 0 0 3# 6 0 0 4# 8 0 0 5# 10 0 0 6# 0 1 0 7# 0 2 0 8# 0 3 0 9# 0 4 0 10# 0 5 0 11# 0 0 1 12# 0 0 2 13# 0 0 3 14# 0 0 4 15# 0 0 5 16# 2 1 1 17# 2 3 5 18# 2 5 5 19# 6 1 3 20# 6 3 5 21# 6 5 1 22# 10 1 5 23# 10 3 1 24# 10 5 3 25# 0 0 0 26# 6 3 3 27# 10 5 5 表 6 16#~24#试块的抗压强度
Table 6. Strength of cement-soil samples 16# to 24#
/MPa 编号 龄期/d 7 14 28 60 90 180 270 360 16# 0.42 0.77 1.35 1.91 2.66 2.49 3.03 3.91 17# 0.44 0.81 1.53 2.48 2.42 3.05 2.90 3.52 18# 0.39 0.63 1.59 2.60 2.83 2.72 3.11 3.62 19# 0.43 0.80 1.14 2.50 2.27 2.50 3.11 3.32 20# 0.43 0.88 1.63 2.74 2.30 2.48 3.21 3.66 21# 0.42 0.71 1.57 2.65 2.53 2.74 3.33 3.58 22# 0.39 0.80 1.63 1.93 2.57 2.06 3.18 3.61 23# 0.41 0.83 1.51 1.91 2.22 2.99 3.63 3.15 24# 0.35 0.81 1.46 2.38 2.69 2.83 3.77 3.61 表 7 不同龄期条件下Mg2+、Cl−和
${\rm{SO}}_4^{2-} $ 的极差和方差计算结果Table 7. Calculation results of the range and variance
龄期/d 极差 方差 影响程度 Mg2+ Cl− Mg2+ Cl− 7 4.12e-2 3.55e-2 1.65e-2 2.72e-3 1.94e-3 4.44e-4 Mg2+>Cl−> 14 7.75e-2 1.21e-1 3.83e-2 1.01e-2 2.24e-2 2.82e-3 Cl−>Mg2+> 28 8.73e-2 1.87e-1 2.38e-1 1.14e-2 6.35e-2 8.57e-2 >Cl−>Mg2+ 60 5.55e-1 4.26e-1 2.94e-1 4.64e-1 2.77e-1 1.59e-1 Mg2+>Cl−> 90 2.71e-1 3.63e-1 1.11e-1 1.10e-1 1.97e-1 2.15e-2 Cl−>Mg2+> 180 1.79e-1 4.86e-1 3.70e-1 5.09e-2 4.10e-1 2.41e-1 Cl−> >Mg2+ 270 5.10e-1 2.94e-1 1.59e-1 3.96e-1 1.29e-1 3.85e-2 Mg2+>Cl−> 360 2.28e-1 1.74e-1 1.44e-1 8.35e-2 5.66e-2 2.15e-2 Mg2+>Cl−> -
[1] 李浩铭. 高含盐软土水泥固化强度特性研究及微观分析[D]. 上海: 同济大学, 2014.
LI Haoming. Strength and microstructure of salt-rich soft soil improved by cement [D]. Shanghai: Tongji University, 2014. (in Chinese with English abstract)
[2] 杨晓明. 水泥处置高含盐量软土的微观试验和机理研究[D]. 上海: 同济大学, 2006.
YANG Xiaoming. Microstructure and mechanism research on cement stabilized salt-rich clay[D]. Shanghai: Tongji University, 2006.(in Chinese with English abstract)
[3] XIONG F, XING H F, LI H M. Experimental study on the effects of multiple corrosive ion coexistence on soil-cement characteristics[J]. Soils and Foundations,2019,59(2):398 − 406. doi: 10.1016/j.sandf.2018.12.001
[4] 颜恩锋, 孙友宏, 许振华, 等. 深层水泥土搅拌桩在基坑支护中的应用[J]. 岩土力学,2003,24(增刊1):90 − 93. [YAN Enfeng, SUN Youhong, XU Zhenhua, et al. Application of deep mixing cement-soil pile to foundation pit supporting[J]. Rock and Soil Mechanics,2003,24(Sup1):90 − 93. (in Chinese with English abstract)
[5] 黄新, 周国钧. 水泥加固土硬化机理初探[J]. 岩土工程学报,1994,16(1):62 − 68. [HUANG Xin, ZHOU Guojun. Hardening mechanism of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering,1994,16(1):62 − 68. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1994.01.008
[6] 宁宝宽, 陈四利, 刘斌. 水泥土的环境侵蚀效应与破裂过程分析[J]. 岩石力学与工程学报,2005,24(10):1778 − 1782. [NING Baokuang, CHEN Sili, LIU Bin. Fracturing behaviors of cemented soil under environmental erosion[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(10):1778 − 1782. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.10.024
[7] XING H F, XIONG F, ZHOU F. Improvement for the strength of salt-rich soft soil reinforced by cement[J]. Marine Georesources & Geotechnology,2018,36(1):38 − 42.
[8] 邢皓枫, 杨晓明, 徐超, 等. 水泥和添加剂对高含盐水泥土强度的影响[J]. 同济大学学报(自然科学版),2008,36(8):1062 − 1066. [XING Haofeng, YANG Xiaoming, XU Chao, et al. Effects of cement and additive on strength of soil-cement with high salt[J]. Journal of Tongji University (Natural Science),2008,36(8):1062 − 1066. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-374X.2008.08.010
[9] 徐超, 李钊, 阳吉宝. 珊瑚礁砂水泥配比试验研究[J]. 水文地质工程地质,2014,41(5):70 − 74. [XU Chao, LI Zhao, YANG Jibao. Research on mixing proportion test of cemented coral reef sand[J]. Hydrogeology & Engineering Geology,2014,41(5):70 − 74. (in Chinese with English abstract)
[10] 刘兴华, 韩晓猛, 徐超, 等. 海相软土对水泥土强度影响的机理研究[J]. 工业建筑,2009,39(3):64 − 68. [LIU Xinghua, HAN Xiaomeng, XU Chao, et al. Research on mechanism of effect of marine soft clay on cement-soil[J]. Industrial Construction,2009,39(3):64 − 68. (in Chinese with English abstract)
[11] 崔新壮, 张娜, 王聪, 等. 黄河三角洲改性含盐水泥土搅拌桩耐久性研究[J]. 建筑材料学报,2013,16(3):481 − 486. [CUI Xinzhuang, ZHANG Na, WANG Cong, et al. Durability of salty soil-cement mixed pile in the Yellow River Delta[J]. Journal of Building Materials,2013,16(3):481 − 486. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9629.2013.03.018
[12] 徐菲, 蔡跃波, 钱文勋, 等. 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报,2019,41(9):1679 − 1687. [XU Fei, CAI Yuebo, QIAN Wenxun, et al. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering,2019,41(9):1679 − 1687. (in Chinese with English abstract)
[13] XING H F, YANG X M, XU C, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology,2009,103(1/2):33 − 38.
[14] 中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2004.
Ministry of Construction of the People's Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)
[15] PU S Y, ZHU Z D, WANG H R, et al. Mechanical characteristics and water stability of silt solidified by incorporating lime, lime and cement mixture, and SEU-2 binder[J]. Construction and Building Materials,2019,214:111 − 120. doi: 10.1016/j.conbuildmat.2019.04.103
[16] 梁仁旺, 张明, 白晓红. 水泥土的力学性能试验研究[J]. 岩土力学,2001,22(2):211 − 213. [LIANG Renwang, ZHANG Ming, BAI Xiaohong. Analysis of laboratory test results of cemented soil[J]. Rock and Soil Mechanics,2001,22(2):211 − 213. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2001.02.023
[17] HORPIBULSUK S, MIURA N, NAGARAJ T S. Clay–Water∕Cement ratio identity for cement admixed soft clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(2):187 − 192. doi: 10.1061/(ASCE)1090-0241(2005)131:2(187)
[18] 中华人民共和国住房和城乡建设部.水泥土配合比设计规程: JGJ/T 233—2011[S]. 北京: 中国建筑工业出版社, 2011.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of cement soil: JGJ/T 233—2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)