-
摘要:
土石混合体在剪切过程中存在剪应力跌落的现象,基于该现象,本文采用大型直剪试验的方式,考虑不同含石量(0%、30%、50%、70%)、上覆垂直压力(50,200,300,400 kPa)、块石尺寸(9.5~19.0 mm、19.0~31.5 mm、31.5~53.0 mm) 3个主要控制因素,进行室内剪切变形试验,研究直剪过程中发生的剪应力跌落现象。同时,通过在试样内部钻孔、埋置细铝丝与干灰的方法获取剪切带变形厚度,结合其大小理解剪应力的脆性跌落特征和剪切带块石变形特征。基于试验分析表明,具备骨架结构且所含块石尺寸大于剪切带厚度的土石混合体试样在高垂直应力下的剪切过程中易出现块石应力集中,形成锁固体块石,该类块石往往控制着试样一定时空下的整体剪切强度,其受剪切作用翻滚、滑移甚至咬合棱角破碎是导致剪应力瞬间大幅度跌落的直接原因。高含石量、大尺寸块石、高垂直应力是形成块石应力锁固体的必要条件。低含石量状态(<50%),剪切带块石多顺剪切方向翻滚,越靠近剪切面边缘,变形越明显,块石相对空间位置变化较小。高含石量状态(>70%),剪切带块石可见相互滑移、攀爬,块石相对空间位置变化明显。块石尺寸小于剪切带厚度时,剪应力多呈现波动特征,而块石尺寸接近剪切带厚度时,剪应力波动加剧,出现明显的应力跌落,对应垂直位移出现突变。满足含石量高于70%、块石尺寸大于剪切带厚度的试样在相对较大的上覆垂直应力作用下易形成块石应力锁固体。
Abstract:The shear stress-dropping (jump) of the soil-rock mixture (S-RM) exists under direct shear conditions. In this paper the main factors affecting the stress-dropping are explored with the large scale direct shear test. Artificial soil-rock mixture specimens are prepared for different rock block proportions (0%, 30%, 50% and 70%), normal pressures (50, 200, 300 and 400 kPa), and rock sizes ranging from 9.5 to 19.0 mm, from 19.0 to 31.5 mm and from 31.5 to 53.0 mm. Meanwhile, the thickness of the shear band is monitored by putting the aluminum wires and dry ash into the hole inside the specimens. The thickness of the shear band will contribute to further understand the stress jump and rock blocks deformation. The experimental results show that the soil-rock mixture sample with skeleton structure and larger rock blocks is inclined to form the interlocking rock block. Furthermore, the shear strength of the sample is dominated by interlocking rock blocks until the breakage of the rock block. The rotation, slippage, and breakage of interlocking rock block are the direct causes of the stress-dropping. The high content of the rock blocks, rock blocks of oversize, and high normal pressure are the necessary conditions for the formation of the stress locked patch. When the sample rock content is 50%, the rotation of shear band rock blocks in the shear direction is observed, and the deformation of rock blocks are more obvious close to the sidewall. However, the change of relative spatial arrangement of rock blocks is not more obvious, when the rock content of the sample is 70%, the behaviors of sliding, climbing, and the change of relative spatial arrangement of rock blocks are more notable than those of the sample with rock content of 50%. When the rock block size is less than the shear band thickness, the shear stress curve shows a wave shape. However, when the rock block size is close to the shear band thickness, the shear stress curve shows obvious brittle stress-dropping, and the vertical displacement will change sharply accordingly. Under the large-scale direct shear test of soil-rock mixture with high-level normal stress, the specimen with the rock content of above 70% and the size of rock block larger than the thickness of shear band will be apt to form the stress locked patch.
-
Key words:
- soil-rock mixture /
- large-scale direct shear test /
- stress-dropping /
- shear band /
- stress locked patch
-
图 13 三轴压缩下单锁固体变形破坏过程[31]
Figure 13.
表 1 剪切带厚度值D
Table 1. Shear band thickness D
块石尺寸/mm 含石量/% 垂直应力/kPa 50 200 300 400 D/cm D/cm D/cm D/cm 0 3.9 4.3 3.5 3.7 L1(9.5~19.0) 30 4.7 5.4 5.6 4.5 50 6.1 6.4 6.8 5.2 70 5.5 6.4 5.2 6.1 L2(19.0~31.5) 30 4.3 5.7 5.3 5.5 50 6.3 7.2 6.5 6.9 70 6.1 6.7 6.1 6.6 L3(31.5~53.0) 30 4.7 4.9 5.0 4.3 50 5.3 6.6 6.8 6.5 70 7.2 6.5 7.3 7.7 -
[1] 油新华, 何刚, 李晓. 土石混合体边坡的细观处理技术[J]. 水文地质工程地质,2003,30(1):18 − 21. [YOU Xinhua, HE Gang, LI Xiao. Meso-handling technology of earth-rock aggregate slope[J]. Hydrogeology & Engineering Geology,2003,30(1):18 − 21. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2003.01.005
[2] 刘新荣, 涂义亮, 王林枫, 等. 土石混合体的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报,2017,36(9):2260 − 2274. [LIU Xinrong, TU Yiliang, WANG Linfeng, et al. Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(9):2260 − 2274. (in Chinese with English abstract)
[3] XU W J, YUE Z Q, HU R L. Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):749 − 762. doi: 10.1016/j.ijrmms.2007.09.003
[4] GUO P J, SU X B. Shear strength, interparticle locking, and dilatancy of granular materials[J]. Canadian Geotechnical Journal,2007,44(5):579 − 591. doi: 10.1139/t07-010
[5] ZHANG H Y, XU W J, YU Y Z. Triaxial tests of soil-rock mixtures with different rock block distributions[J]. Soils and Foundations,2016,56(1):44 − 56. doi: 10.1016/j.sandf.2016.01.004
[6] 邵忠瑞, 罗雪贵, 郭娜娜. 含石量对软质岩土石混合料土力学特性影响研究[J]. 水文地质工程地质,2019,46(1):111 − 115. [SHAO Zhonrui, LUO Xuegui, GUO Nana. A study of the effect of rock content on mechanical properties of soil-soft rock mixture[J]. Hydrogeology & Engineering Geology,2019,46(1):111 − 115. (in Chinese with English abstract)
[7] 徐文杰, 胡瑞林, 岳中琦, 等. 基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J]. 岩石力学与工程学报,2008,27(5):996 − 1007. [XU Wenjie, HU Ruilin, YUE Zhongqi, et al. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics & Engineering,2008,27(5):996 − 1007. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.05.016
[8] GAO W W, GAO W, HU R L, et al. Microtremor survey and stability analysis of a soil-rock mixture landslide: a case study in Baidian town, China[J]. Landslides,2018,15(10):1951 − 1961. doi: 10.1007/s10346-018-1009-x
[9] SEMINSKY L. The shear strength of granular materials with dispersed and non-dispersed oversized particles[D]. Pittsburgh: University of Pittsburgh, 2013.
[10] 马昊, 黄达, 肖衡林, 等. 江北机场高填方夯后碎块石土剪切力学性质研究[J]. 水文地质工程地质,2019,46(3):88 − 94. [MA Hao, HUANG Da, XIAO Henglin, et al. A study of the shear mechanical properties of high-filled gravel-block soil after dynamic compaction near the Jiangbei airport[J]. Hydrogeology & Engineering Geology,2019,46(3):88 − 94. (in Chinese with English abstract)
[11] 秦四清, 徐锡伟, 胡平, 等. 孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J]. 地球物理学报,2010,53(4):1001 − 1014. [QIN Siqing, XU Xiwei, HU Ping, et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction[J]. Chinese Journal of Geophysics,2010,53(4):1001 − 1014. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2010.04.025
[12] 徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质,2009,36(4):50 − 56. [XU Wenjie, HU Ruilin. Conception, classification and significations of soil-rock mixture[J]. Hydrogeology & Engineering Geology,2009,36(4):50 − 56. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.04.012
[13] XU W J, LI C Q, ZHANG H Y. DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test[J]. Geomechanics and Engineering,2015,9(6):815 − 827. doi: 10.12989/gae.2015.9.6.815
[14] 水电水利工程粗粒土试验规程: DL/T 5356—2006[S]. 北京: 中国电力出版社, 2007.
Code for coarse -grained soil tests for hydropower and water conservancy engineering: DL/T 5356—2006[S]. Beijing: China Electric Power Press, 2007. (in Chinese)
[15] 胡峰, 李志清, 胡瑞林, 等. 基于大型直剪试验的土石混合体剪切带变形特征试验研究[J]. 岩石力学与工程学报,2018,37(3):766 − 778. [HU Feng, LI Zhiqing, HU Ruilin, et al. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):766 − 778. (in Chinese with English abstract)
[16] XU W J, XU Q, HU R L. Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(8):1235 − 1247. doi: 10.1016/j.ijrmms.2011.09.018
[17] 邓华锋, 原先凡, 李建林, 等. 土石混合体直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报,2013,32(增刊2):4065 − 4072. [DENG Huafeng, YUAN Xianfan, LI Jianlin, et al. Research on failure characteristics and determination method for shear strength of earth-rock aggregate in direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup2):4065 − 4072. (in Chinese with English abstract)
[18] 董云, 柴贺军, 杨慧丽. 土石混填路基原位直剪与室内大型直剪试验比较[J]. 岩土工程学报,2005,27(2):235 − 238. [DONG Yun, CHAI Hejun, YANG Huili. Comparison of shear test in site and lab large-scale shear test for rock-soil aggregate of roadbed[J]. Chinese Journal of Geotechnical Engineering,2005,27(2):235 − 238. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2005.02.021
[19] 夏加国, 胡瑞林, 祁生文, 等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报,2017,36(8):2031 − 2039. [XIA Jiaguo, HU Ruilin, QI Shengwen, et al. Large-scale triaxial shear testing of soil rock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(8):2031 − 2039. (in Chinese with English abstract)
[20] 赵金凤, 严颖, 季顺迎. 基于离散元模型的土石混合体直剪试验分析[J]. 固体力学学报,2014,35(2):124 − 134. [ZHAO Jinfeng, YAN Ying, JI Shunying. Analysis of direct shear test of soil-rock mixture based on discrete element model[J]. Chinese Journal of Solid Mechanics,2014,35(2):124 − 134. (in Chinese with English abstract)
[21] 周剑, 张路青, 戴福初, 等. 基于黏结颗粒模型某滑坡土石混合体直剪试验数值模拟[J]. 岩石力学与工程学报,2013,32(增刊1):2650 − 2659. [ZHOU Jian, ZHANG Luqing, DAI Fuchu, et al. Numerical simulation of direct shear tests for rock and soil mixture in a landslide based on bonded-particle model[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup1):2650 − 2659. (in Chinese with English abstract)
[22] 张强, 汪小刚, 赵宇飞, 等. 土石混合体三维细观结构随机重构及其力学特性颗粒流数值模拟研究[J]. 岩土工程学报,2019,41(1):60 − 69. [ZHANG Qiang, WANG Xiaogang, ZHAO Yufei, et al. 3D random reconstruction of meso-structure for soil-rock mixture and numerical simulation of its mechanical characteristics by particle flow code[J]. Chinese Journal of Geotechnical Engineering,2019,41(1):60 − 69. (in Chinese with English abstract)
[23] 严颖, 赵金凤, 季顺迎. 块石含量和空间分布对土石混合体抗剪强度影响的离散元分析[J]. 工程力学,2017,34(6):146 − 156. [YAN Ying, ZHAO Jinfeng, JI Shunying. Discrete element analysis of the influence of rock content and rock spatial distribution on shear strength of rock-soil mixtures[J]. Engineering Mechanics,2017,34(6):146 − 156. (in Chinese with English abstract)
[24] 国家市场监督管理总局, 国家标准化管理委员会. 滑坡防治设计规范: GB/T 38509—2020[S]. 北京: 中国标准出版社, 2020.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Code for the design of landslide stabilization: GB/T 38509—2020[S]. Beijing: Standards Press of China, 2020. (in Chinese)
[25] LEI X L. How do asperities fracture? An experimental study of unbroken asperities[J]. Earth and Planetary Science Letters,2003,213(3/4):347 − 359.
[26] VALLEJO L, LOBO-GUERRERO S. The shear strength of granular materials containing dispersed oversized particles: DEM analysis[J]. International Journal of Geotechnical Engineering,2012,6(3):371 − 380. doi: 10.3328/IJGE.2012.06.03.371-379
[27] 徐文杰, 王识. 基于真实块石形态的土石混合体细观力学三维数值直剪试验研究[J]. 岩石力学与工程学报,2016,35(10):2152 − 2160. [XU Wenjie, WANG Shi. Meso-mechanics of soil-rock mixture with real shape of rock blocks based on 3D numerical direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(10):2152 − 2160. (in Chinese with English abstract)
[28] MEDLEY E W, ZEKKOS D. Geopractitioner approaches to working with antisocial mélanges[C]//Mélanges: Processes of Formation and Societal Significance. Geological Society of America, 2011: 261-277.
[29] LINDQUIST E S. The strength and deformation properties of mélange[D]. Berkeley: University of California, Berkeley, 1994.
[30] 郭庆国. 关于粗粒土抗剪强度特性的试验研究[J]. 水利学报,1987(5):59 − 65. [GUO Qingguo. Experimental research on shear strength characteristics of coarse grained soil[J]. Journal of Hydraulic Engineering,1987(5):59 − 65. (in Chinese) doi: 10.3321/j.issn:0559-9350.1987.05.009
[31] 秦四清, 熊巨华, 薛雷, 等. 强震的孕育规律与孕震模式[J]. 地球科学与环境学报,2011,33(3):311 − 316. [QIN Siqing, XIONG Juhua, XUE Lei, et al. Seismogenic law and mode of strong earthquakes[J]. Journal of Earth Sciences and Environment,2011,33(3):311 − 316. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2011.03.014