扁铲探头贯入干砂的位移特征试验研究

陈忠清, 吴天宇, 高彦斌, 吕越, 刘帅. 扁铲探头贯入干砂的位移特征试验研究[J]. 水文地质工程地质, 2021, 48(3): 119-125. doi: 10.16030/j.cnki.issn.1000-3665.202008046
引用本文: 陈忠清, 吴天宇, 高彦斌, 吕越, 刘帅. 扁铲探头贯入干砂的位移特征试验研究[J]. 水文地质工程地质, 2021, 48(3): 119-125. doi: 10.16030/j.cnki.issn.1000-3665.202008046
CHEN Zhongqing, WU Tianyu, GAO Yanbin, LYU Yue, LIU Shuai. An experimental study of the displacement characteristics of dry sand under dilatometer penetration[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 119-125. doi: 10.16030/j.cnki.issn.1000-3665.202008046
Citation: CHEN Zhongqing, WU Tianyu, GAO Yanbin, LYU Yue, LIU Shuai. An experimental study of the displacement characteristics of dry sand under dilatometer penetration[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 119-125. doi: 10.16030/j.cnki.issn.1000-3665.202008046

扁铲探头贯入干砂的位移特征试验研究

  • 基金项目: 国家自然科学基金项目(41972273);浙江省公益技术应用研究计划项目(2016C33052)
详细信息
    作者简介: 陈忠清(1984-),男,博士,讲师,研究方向为地基处理与工程地质。E-mail: q_chen_yk@163.com
    通讯作者: 高彦斌(1973-),男,博士,副教授,研究方向为软土力学特性和软土工程。E-mail: yanbin_gao@tongji.edu.cn
  • 中图分类号: TU411.93;TU413.5

An experimental study of the displacement characteristics of dry sand under dilatometer penetration

More Information
  • 扁铲侧胀试验(DMT)已在国内外岩土工程勘察、地基加固效果评价等领域中得到广泛应用。DMT的测试过程在扁铲探头贯入到测试位置后进行,因此探头的贯入过程对土体造成的扰动在一定程度上将直接影响测试结果。目前关于扁铲探头的贯入机理,以及贯入过程可能引起的土体扰动及其对测试结果的影响尚未研究清楚。通过室内模型试验手段,进行扁铲探头贯入不同初始密实状态下均质干砂的试验研究,分析了探头贯入过程中产生的土体位移场分布特征。试验结果表明:扁铲探头的楔形部和膜片所在的侧胀部贯入产生的挤压作用是引起土体变形扰动的主要原因;探头楔形部的贯入过程表现为向下和向斜侧面挤压土体,竖向位移量很小,产生向两侧扩展为主的扁状位移场,而探头侧胀部的贯入过程主要表现为向两侧面水平向挤压土体,产生半椭圆状水平位移场且分布范围明显更大,同时探头侧面表现为一定的剪切作用而产生较窄范围的竖向位移场。另外,扁铲探头贯入干砂产生的位移场受砂土初始密实状态的影响较小,主要表现为探头楔形部周围的位移场分布范围随密实度增大而扩大。

  • 加载中
  • 图 1  标准砂颗粒级配曲线

    Figure 1. 

    图 2  扁铲侧胀探头

    Figure 2. 

    图 3  模型试验照片

    Figure 3. 

    图 4  小型静力触探仪的探头

    Figure 4. 

    图 5  模型箱及制样装置

    Figure 5. 

    图 6  比贯入阻力随深度的变化曲线

    Figure 6. 

    图 7  探头贯入松砂的位移向量(a)和水平位移(b)、竖向位移(c)云图分布

    Figure 7. 

    图 8  探头贯入中密砂的位移向量(a)水平位移(b)和竖向位移(c)分布云图

    Figure 8. 

    图 9  探头贯入密砂的位移向量(a)水平位移(b)和竖向位移(c)分布云图

    Figure 9. 

    表 1  试验分组及相关试验参数

    Table 1.  Test groups and related test parameters

    试验编号 干密度ρd /(g·cm−3 初始相对密度Dr 初始密实状态
    No.1 1.73 0.25 松散
    No.2 1.77 0.44 中密
    No.3 1.83 0.75 密实
    下载: 导出CSV
  • [1]

    MARCHETTI S. In situ tests by flat dilatometer[J]. Journal of the Geotechnical Engineering Division,1980,106(GT3, Proc. Paper, 15290):299 − 321.

    [2]

    ASTM D 6635—15. Standard Test Method for Performing the Flat Plate Dilatometer[S]. ASTM International, West Conshohocken, PA, USA, 2015.

    [3]

    EN 1997—2: 2007. Eurocode 7: Geotechnical Design –Part 2: Ground Investigation and Testing[S]. CEN European Committee for Standardization, Brussels, Belgium, 2007.

    [4]

    ISO 22476—11: 2017(E). Geotechnical Investigation and Testing –Field Testing –Part 11: Flat Dilatometer Test[S]. International Organization for Standardization, Geneva, Switzerland, 2017.

    [5]

    中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001(2009年版) [S]. 北京: 中国建筑工业出版社, 2009.

    National Standard of the People’s Republic of China. Code for Investigation of Geo technical Engineering: GB 50021—2001(2009) [S]. Beijing: China Building Industry Press, 2009. (in Chinese)

    [6]

    MARCHETTI D. In situ tests by Medusa DMT [C] //Proceedings of Proceedings of the XVII ECSMGE-2019: Geotechnical Engineering foundation of the future, Italian Geotechnical Society, Rome, 2019.

    [7]

    MARCHETTI D. Dilatometer and seismic dilatometer testing offshore: available experience and new developments[J]. Geotechnical Testing Journal,2018,41(5):20170378. doi: 10.1520/GTJ20170378

    [8]

    程健, 张丹, 刘子文. 基于弯曲元的剪切波扁铲侧胀技术可行性试验研究[J]. 工程勘察,2018,46(3):12 − 16. [CHENG Jian, ZHANG Dan, LIU Ziwen. Feasibility study on flat shovel bulging technique with shear wave based on bending elements[J]. Geotechnical Investigation & Surveying,2018,46(3):12 − 16. (in Chinese with English abstract)

    [9]

    刘学彦, 朱定华, 袁大军. 扁铲侧胀仪的改进及应用[J]. 岩土工程学报,2013,35(7):1375 − 1380. [LIU Xueyan, ZHU Dinghua, YUAN Dajun. Improvement and application of flat dilatometer[J]. Chinese Journal of Geotechnical Engineering,2013,35(7):1375 − 1380. (in Chinese with English abstract)

    [10]

    MARCHETTI S, MONACO P. Recent improvements in the use, interpretation, and applications of DMT and SDMT in practice[J]. Geotechnical Testing Journal,2018,41(5):20170386. doi: 10.1520/GTJ20170386

    [11]

    杨超, 汪稔, 傅志斌, 等. 扁铲侧胀试验在滨海沉积软土中的应用[J]. 水文地质工程地质,2010,37(2):79 − 82. [YANG Chao, WANG Ren, FU Zhibin, et al. Application of flat Dilatometer Test in littoral deposit soft soil[J]. Hydrogeology & Engineering Geology,2010,37(2):79 − 82. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.02.017

    [12]

    徐超, 陈忠清, 邢皓枫, 等. 扁铲侧胀试验在地基处理效果评价中的应用[J]. 水文地质工程地质,2009,36(1):100 − 103. [XU Chao, CHEN Zhongqing, XING Haofeng, et al. Application of flat dilatometer test in evaluation of soft soil foundation improvement[J]. Hydrogeology & Engineering Geology,2009,36(1):100 − 103. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.01.022

    [13]

    BALIGH M M, SCOTT R F. Quasi-static deep penetration in clays[J]. Journal of the Geotechnical Engineering Division,1975,101(11):1119 − 1133.

    [14]

    HUANG A B. Strain-path analyses for arbitrary three-dimensional penetrometers[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1989,13(5):551 − 564. doi: 10.1002/nag.1610130507

    [15]

    BENOÎT T J, STETSON K P. Use of an instrumented flat dilatometer in soft varved clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(12):1159 − 1167. doi: 10.1061/(ASCE)1090-0241(2003)129:12(1159)

    [16]

    FINNO R J. Analytical interpretation of dilatometer penetration through saturated cohesive soils[J]. Geotechnique,1993,43(2):241 − 254. doi: 10.1680/geot.1993.43.2.241

    [17]

    LEVADOUX J N and BALIAH M M. Pore pressures during cone penetrckon in clays[R]. Research report R80-15, Massachusetts Institute of Technology, USA, 1980.

    [18]

    罗松. 扁铲侧胀试验机理有限元分析及其在地基处理效果检验中的应用[D]. 上海: 同济大学, 2006.

    LUO Song. The finite element analysis of the mechanism of DMT and the application of DMT on compaction control[D]. Shanghai: Tongji University, 2006. (in Chinese with English abstract)

    [19]

    周健, 崔积弘, 贾敏才, 等. 静力触探试验的离散元数值模拟研究[J]. 岩土工程学报,2007,29(11):1604 − 1610. [ZHOU Jian, CUI Jihong, JIA Mincai, et al. Numerical simulation of cone penetration test by discrete element method[J]. Chinese Journal of Geotechnical Engineering,2007,29(11):1604 − 1610. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2007.11.002

    [20]

    JIANG M J, YU H S, HARRIS D. Discrete element modelling of deep penetration in granular soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2006,30(4):335 − 361. doi: 10.1002/nag.473

    [21]

    陈维家, 陈映南. 砂土静力触探机理分析[J]. 岩土工程学报,1990,12(2):64 − 72. [CHEN Weijia, CHEN Yingnan. Mechanism analysis of static cone penetration test of sand[J]. Chinese Journal of Geotechnical Engineering,1990,12(2):64 − 72. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1990.02.008

    [22]

    陈维家, 胡逸群. 用白光散斑法定量分析静力触探时土体的位移场[J]. 长沙铁道学院学报,1988,6(4):87 − 95. [CHEN Weijia, HU Yiqun. Determination of displacement fields of a cone during static-penetration test by white-light speckle photography[J]. Journal of Changsha Railway Institute,1988,6(4):87 − 95. (in Chinese with English abstract)

  • 加载中

(9)

(1)

计量
  • 文章访问数:  1384
  • PDF下载数:  95
  • 施引文献:  0
出版历程
收稿日期:  2020-08-17
修回日期:  2020-09-08
刊出日期:  2021-05-15

目录