浅埋洞口段黄土公路隧道施工变形性状现场测试研究

邱明明, 杨果林, 张沛然, 段君义. 浅埋洞口段黄土公路隧道施工变形性状现场测试研究[J]. 水文地质工程地质, 2021, 48(3): 135-143. doi: 10.16030/j.cnki.issn.1000-3665.202008002
引用本文: 邱明明, 杨果林, 张沛然, 段君义. 浅埋洞口段黄土公路隧道施工变形性状现场测试研究[J]. 水文地质工程地质, 2021, 48(3): 135-143. doi: 10.16030/j.cnki.issn.1000-3665.202008002
QIU Mingming, YANG Guolin, ZHANG Peiran, DUAN Junyi. Field test on the construction deformation characteristics for a loess highway tunnel at the shallow portal section[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 135-143. doi: 10.16030/j.cnki.issn.1000-3665.202008002
Citation: QIU Mingming, YANG Guolin, ZHANG Peiran, DUAN Junyi. Field test on the construction deformation characteristics for a loess highway tunnel at the shallow portal section[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 135-143. doi: 10.16030/j.cnki.issn.1000-3665.202008002

浅埋洞口段黄土公路隧道施工变形性状现场测试研究

  • 基金项目: 国家自然科学基金项目(51778641);陕西省自然科学基础研究计划项目(2019JQ-834);陕西省教育厅科研计划项目(19JK0963);延安市重点研发计划项目(2019ZCSY-006);延安大学科研计划项目(YDBK2017-32;YDZ2019-08;YDY2020-36)
详细信息
    作者简介: 邱明明(1985-),男,博士,讲师,主要从事交通岩土工程、隧道及地下工程研究。E-mail: sxdfqiuming@163.com
  • 中图分类号: U456.3+1

Field test on the construction deformation characteristics for a loess highway tunnel at the shallow portal section

  • 以某黄土公路隧道工程为依托,借助现场测试方法研究浅埋洞口段黄土公路隧道地表沉降、拱顶下沉和周边收敛时态分布规律,并结合实测数据建立隧道施工变形统计分析预测模型。研究结果表明:(1)黄土隧道施工变形呈现显著的时间和空间效应,其时态分布曲线符合指数函数型发展规律;(2)地表沉降随时间呈增长趋势,约60 d后逐渐趋于稳定,其最大值(wmax)的统计变化范围为(−30.78~−105.20)mm;(3)横向地表沉降曲线分布呈凹槽形,沉降槽宽度约(3~5)倍隧道跨度(B),且隧道开挖引起的地层损失率为0.74%~3.08%;(4)拱顶下沉与周边收敛时态曲线可分为线性增长、持续变形和平稳发展3个阶段,且线性增长阶段占总变形量的60%以上;(5)vmax的统计值变化范围为(−17.1~−201.1)mm,其95%置信区间为[−51.53,−65.11],umax的统计值变化范围为(−12.1~−122.0)mm,其95%置信区间为[−35.08,−43.39],建议V级围岩黄土隧道预留变形量取值范围为(−100~−150)mm;(6)拱顶下沉与周边收敛速率时态曲线呈先急剧增加后逐渐衰减趋势,最终稳定后的拱顶下沉速率(Δv)和周边收敛速率(Δu)依次为(−0.05~−0.80)mm/d和(−0.02~−0.60)mm/d。

  • 加载中
  • 图 1  黄土隧道进出口段地质纵剖面

    Figure 1. 

    图 2  交叉中隔壁(CRD)法施工步骤

    Figure 2. 

    图 3  隧道周边位移监测点布设剖面图(单位:m)

    Figure 3. 

    图 4  不同测试断面地表沉降-历时曲线分布规律

    Figure 4. 

    图 5  不同测试断面横向地表沉降曲线分布规律

    Figure 5. 

    图 6  不同测试断面拱顶下沉-历时曲线分布规律

    Figure 6. 

    图 7  不同测试断面拱顶下沉速率-历时曲线分布规律

    Figure 7. 

    图 8  不同测试断面周边收敛-历时曲线分布规律

    Figure 8. 

    图 9  不同测试断面周边收敛速率-历时曲线分布规律

    Figure 9. 

    表 1  隧道开挖引起的地表沉降(测点DB0)与时间的关系

    Table 1.  Fitting equations between ground settlement(point DB0)caused by tunnel excavation and time

    测试断面 拟合函数:wt)=a*exp(−t/b)+w0 R2
    ZK86+515 w=304.32*exp(−t/162.97)−304.36 0.922
    ZK87+625 w=27.09*exp(−t/23.86)−32.08 0.908
    ZK87+630 w=25.15*exp(−t/13.55)−27.43 0.912
    YK87+605 w=64.81*exp(−t/30.34)−57.35 0.978
    YK87+610 w=51.59*exp(−t/23.24)−46.82 0.984
    下载: 导出CSV

    表 2  横向地表沉降分布曲线预测结果对比

    Table 2.  Comparison of the predicted results of transversal ground settlement

    测试断面 拟合函数:wx)=−a*exp(−x2/b R2 最大地表沉降计算值wc/mm 最大地表沉降实测值wmax/mm wc/wmax i/m η/%
    ZK86+515 w=−111.28*exp(−x2/254.33) 0.958 111.28 105.20 1.058 11.28 3.08
    ZK87+625 w=−34.31*exp(−x2/218.54) 0.903 34.31 34.85 0.985 10.45 0.88
    ZK87+630 w=−32.95*exp(−x2/167.65) 0.931 32.95 30.78 1.071 9.16 0.74
    YK87+605 w=−51.70*exp(−x2/128.43) 0.941 51.70 54.00 0.957 8.01 1.02
    YK87+610 w=−47.67*exp(−x2/127.03) 0.787 47.67 47.18 1.010 7.97 0.93
    下载: 导出CSV

    表 3  隧道开挖引起的拱顶下沉与时间的关系

    Table 3.  Fitting equations between vault settlement caused by tunnel excavation and time

    测试断面 拟合函数:vt)=a*exp(−t/b)+v0 R2
    ZK86+610 v=50.49*exp(−t/6.75)−49.57 0.998
    ZK86+715 v=47.73*exp(−t/8.00)−46.96 0.998
    YK86+630 v=37.95*exp(−t/7.94)−40.80 0.962
    YK86+670 v=51.17*exp(−t/7.06)−50.56 0.998
    ZK87+485 v=64.22*exp(−t/8.36)−59.82 0.984
    ZK87+625 v=29.21*exp(−t/26.39)−32.09 0.979
    YK87+385 v=76.46*exp(−t/13.79)−81.24 0.979
    YK87+610 v=22.07*exp(−t/15.27)−24.33 0.979
    下载: 导出CSV
  • [1]

    江金硕, 李荣建, 刘军定, 等. 基于黄土联合强度的黄土隧道围岩应力及位移研究[J]. 岩土工程学报,2019,41(增刊2):189 − 192. [JIANG Jinshuo, LI Rongjian, LIU Junding, et al. Stress and displacement of surrounding rock of loess tunnels based on joint strength[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup2):189 − 192. (in Chinese with English abstract)

    [2]

    干啸洪, 陈立平, 张素磊, 等. 浅埋偏压隧道地表沉降规律及其预测方法[J]. 现代隧道技术,2019,56(2):78 − 84. [GAN Xiaohong, CHEN Liping, ZHANG Sulei, et al. On law of ground settlements and its prediction method for the shallow-buried tunnel under asymmetrical pressures[J]. Modern Tunnelling Technology,2019,56(2):78 − 84. (in Chinese with English abstract)

    [3]

    李骏, 邵生俊, 李国良, 等. 黄土隧道的湿陷变形规律及其对衬砌结构的作用[J]. 岩石力学与工程学报,2018,37(1):251 − 260. [LI Jun, SHAO Shengjun, LI Guoliang, et al. Collapse deformation of loess tunnel and its effect[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):251 − 260. (in Chinese with English abstract)

    [4]

    胡炜, 谭信荣, 蒋尧, 等. 深埋顺层偏压隧道围岩破坏机理及规律研究—以郑万线某隧道为例[J]. 水文地质工程地质,2020,47(3):60 − 68. [HU Wei, TAN Xinrong, JIANG Yao, et al. A study of the mechanism and regularity of failures in the surrounding rock of a deep buried bias tunnel embedded in geologically bedding strata: taking one tunnel of the Zhengwan line as an example[J]. Hydrogeology & Engineering Geology,2020,47(3):60 − 68. (in Chinese with English abstract)

    [5]

    董林, 王兰民, 夏坤, 等. 原状黄土遇水及饱和后软化特征研究[J]. 水文地质工程地质,2016,43(3):148 − 152. [DONG Lin, WANG Lanmin, XIA Kun, et al. A study of soften characteristics of wet and saturated loess[J]. Hydrogeology & Engineering Geology,2016,43(3):148 − 152. (in Chinese with English abstract)

    [6]

    陈建勋, 王梦恕, 轩俊杰, 等. 两车道公路黄土隧道变形规律[J]. 交通运输工程学报,2012,12(3):9 − 18. [CHEN Jianxun, WANG Mengshu, XUAN Junjie, et al. Deformation rule of loess highway tunnel with two lanes[J]. Journal of Traffic and Transportation Engineering,2012,12(3):9 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1637.2012.03.005

    [7]

    乔雄, 陈建勋, 王梦恕. 黄土公路隧道洞口段变形规律测试研究[J]. 岩石力学与工程学报,2013,32(增刊2):3552 − 3556. [QIAO Xiong, CHEN Jianxun, WANG Mengshu. Test study of deformation law of entrance section for loess highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup2):3552 − 3556. (in Chinese with English abstract)

    [8]

    扈世民, 张顶立, 郭婷, 等. 大断面黄土隧道变形特征分析[J]. 铁道学报,2012,34(8):117 − 122. [HU Shimin, ZHANG Dingli, GUO Ting, et al. Analysis on deformation characteristics of large-section loess tunnel[J]. Journal of the China Railway Society,2012,34(8):117 − 122. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-8360.2012.08.018

    [9]

    李志清, 丁春林, 窦世学, 等. 大断面浅埋黄土隧道围岩变形特性分析[J]. 地下空间与工程学报,2014,10(增刊1):1623 − 1628. [LI Zhiqing, DING Chunlin, DOU Shixue, et al. Analysis on deformation characteristics of surrounding rock in large section shallow loess tunnels[J]. Chinese Journal of Underground Space and Engineering,2014,10(Sup1):1623 − 1628. (in Chinese with English abstract)

    [10]

    孟德鑫, 谭忠盛. 大断面黄土隧道变形控制技术及支护受力特征[J]. 土木工程学报,2015,48(增刊1):383 − 387. [MENG Dexin, TAN Zongsheng. Deformation control technology and supporting structure stress of large section loess tunnel[J]. China Civil Engineering Journal,2015,48(Sup1):383 − 387. (in Chinese with English abstract)

    [11]

    赖金星, 樊浩博, 来弘鹏, 等. 软弱黄土隧道变形规律现场测试与分析[J]. 岩土力学,2015,36(7):2003 − 2012. [LAI Jinxing, FAN Haobo, LAI Hongpeng, et al. In-situ monitoring and analysis of tunnel deformation law in weak loess[J]. Rock and Soil Mechanics,2015,36(7):2003 − 2012. (in Chinese with English abstract)

    [12]

    孔庆祥. 铁路黄土隧道变形规律及建设管理要点研究[J]. 现代隧道技术,2019,56(2):18 − 23. [KONG Qingxiang. Study on deformation law and key points of construction management of loess tunnels[J]. Modern Tunnelling Technology,2019,56(2):18 − 23. (in Chinese with English abstract)

    [13]

    尚海松, 曹海静, 周济兵. 蒙华铁路隧道施工变形监测数据统计分析[J]. 现代隧道技术,2019,56(增刊1):66 − 72. [SHANG Haisong, CAO Haijing, ZHOU Jibing. Statistical analysis of monitored deformation data of Menghua railway tunnels during construction[J]. Modern Tunnelling Technology,2019,56(Sup1):66 − 72. (in Chinese with English abstract)

    [14]

    周鹏, 高金仓, 李磊, 等. 穿越陡坎地形的偏压黄土隧道大变形时空特征研究[J]. 隧道建设(中英文),2020,40(5):652 − 659. [ZHOU Peng, GAO Jincang, LI Lei, et al. Temporal and spatial characteristics of large deformation of unsymmetrically-pressured loess tunnel passing through scarp terrain[J]. Tunnel Construction,2020,40(5):652 − 659. (in Chinese with English abstract)

    [15]

    刘小伟, 原鹏博, 谌文武, 等. Q2饱和黄土隧洞围岩变形特征研究[J]. 冰川冻土,2019,41(6):1422 − 1429. [LIU Xiaowei, YUAN Pengbo, CHEN Wenwu, et al. Study on characteristic of deformation of Q2 saturated loess tunnel's surrounding rock[J]. Journal of Glaciology and Geocryology,2019,41(6):1422 − 1429. (in Chinese with English abstract)

    [16]

    李明, 严松宏, 潘春阳, 等. 富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术,2019,56(4):81 − 88. [LI Ming, YAN Songhong, PAN Chunyang, et al. Analysis of fluid-solid coupling effect during excavation of the water-rich large-section loess tunnel[J]. Modern Tunnelling Technology,2019,56(4):81 − 88. (in Chinese with English abstract)

    [17]

    王道远, 袁金秀, 朱永全, 等. 硬塑-流塑浅埋黄土隧道变形特性及合理预留变形量模型试验研究[J]. 岩土力学,2019,40(10):3813 − 3822. [WANG Daoyuan, YUAN Jinxiu, ZHU Yongquan, et al. Model test study of deformation characteristics and reasonable reserved deformation of shallow-buried loess tunnel with hard-flow plastic[J]. Rock and Soil Mechanics,2019,40(10):3813 − 3822. (in Chinese with English abstract)

  • 加载中

(9)

(3)

计量
  • 文章访问数:  941
  • PDF下载数:  75
  • 施引文献:  0
出版历程
收稿日期:  2020-08-01
修回日期:  2020-09-27
刊出日期:  2021-05-15

目录