基于地面三维激光扫描的三峡库区危岩体监测

褚宏亮, 邢顾莲, 李昆仲, 王国利, 段奇三. 基于地面三维激光扫描的三峡库区危岩体监测[J]. 水文地质工程地质, 2021, 48(4): 124-132. doi: 10.16030/j.cnki.issn.1000-3665.202008015
引用本文: 褚宏亮, 邢顾莲, 李昆仲, 王国利, 段奇三. 基于地面三维激光扫描的三峡库区危岩体监测[J]. 水文地质工程地质, 2021, 48(4): 124-132. doi: 10.16030/j.cnki.issn.1000-3665.202008015
CHU Hongliang, XING Gulian, LI Kunzhong, WANG Guoli, DUAN Qisan. Monitoring of dangerous rock mass in the Three Gorges Reservoir area based on the terrestrial laser scanning method[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 124-132. doi: 10.16030/j.cnki.issn.1000-3665.202008015
Citation: CHU Hongliang, XING Gulian, LI Kunzhong, WANG Guoli, DUAN Qisan. Monitoring of dangerous rock mass in the Three Gorges Reservoir area based on the terrestrial laser scanning method[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 124-132. doi: 10.16030/j.cnki.issn.1000-3665.202008015

基于地面三维激光扫描的三峡库区危岩体监测

  • 基金项目: 三峡后续工作地质灾害防治项目(0001212018CC60008)
详细信息
    作者简介: 褚宏亮(1981-),男,硕士,高级工程师,主要从事工程地质、地质灾害等科研工作。E-mail: chuhl@ mail.cgs.gov.cn
    通讯作者: 李昆仲(1978-),男,硕士,高级工程师,主要从事地质灾害防治、矿山生态修复等科研工作。E-mail: lkz1cy@sina.com
  • 中图分类号: P627

Monitoring of dangerous rock mass in the Three Gorges Reservoir area based on the terrestrial laser scanning method

More Information
  • 三峡水库周期性蓄水改变了岸坡内的地下水渗流场和应力场,降低岩土体的剪切强度,对库岸边坡、岩体稳定性影响很大。以往库区岸坡岩体形变监测主要通过设置固定点进行观测,难以发现岩体整体变化情况。地面三维激光扫描方法能获取岩体整体表面厘米精度的点云数据,具有无需接触目标、获取速度快、精度高等特点,非常适合库区高陡危岩体表面三维形变监测。以巫山箭穿洞危岩体为例,采用地面三维激光扫描方法对箭穿洞危岩体进行了为期2年(2017—2018年)共3期监测,以第一期观测目标周围稳定岩体数据为基准,对数据进行重叠点云迭代配准,点云配准精度优于±2.7 cm。针对箭穿洞危岩体在观测时段内的变化情况,构建危岩体区域的基准不规则三角网模型,以点到基准面最近距离法结合危岩体变化区间分析其变形。通过对比分析箭穿洞危岩体3期观测数据,发现相对于2017年,2018年箭穿洞危岩体左侧岩体有变形趋势;在库区蓄水阶段,危岩体局部多处存在明显凹陷变化,局部因蓄水影响发生约−0.03~−0.07 m变形。结果证明三维激光扫描技术在库岸高陡边坡形变监测中的有效性,为三峡库区高陡危岩体形变监测及地质灾害防治工作提供了参考。

  • 加载中
  • 图 1  箭穿洞位置及危岩体

    Figure 1. 

    图 2  监测基准设定

    Figure 2. 

    图 3  点-面危岩体激光点云变化分析

    Figure 3. 

    图 4  箭穿洞扫描测站及反射片

    Figure 4. 

    图 5  箭穿洞扫描点云

    Figure 5. 

    图 6  箭穿洞3期数据采集结果(单期平均点距为0.08 m)

    Figure 6. 

    图 7  点云植被滤除(Ith= 0.29,测区点数202万,植被点93万)

    Figure 7. 

    图 8  点云数据配准基准及误差分布(计算区间:±0.1 m;1-2配准:平均偏差0.063 m,标准偏差±0.024 m;1-3配准:平均偏差:0.036,标准偏差:±0.028 m)

    Figure 8. 

    图 9  三期点云数据叠加分析

    Figure 9. 

    图 10  点云精度分析结果

    Figure 10. 

    图 11  箭穿洞危岩构建基准TIN模型(第1期,建网步长80 mm,共180万面片)

    Figure 11. 

    图 12  危岩体变化分析统计

    Figure 12. 

    图 13  危岩变化典型值测量结果(采样半径为0.3 m)

    Figure 13. 

    图 14  局部区域变化分析(分析区间±0.08 m)

    Figure 14. 

    图 15  危岩体变化压缩统计区间结果

    Figure 15. 

    图 16  危岩体局部典型位置变化分析

    Figure 16. 

    表 1  Riegl VZ-1000激光扫描仪主要技术指标

    Table 1.  Main technical indexes of Riegl VZ-1000

    性能指标 参数
    测程 1.5 ~ 1200.0+ m
    点位精度 5 mm@ 100 m
    扫描视角 360° (H) × 100° (V)
    角度分辨率 1.8 arcsec
    激光等级 Class1
    下载: 导出CSV

    表 2  危岩体典型位置测量

    Table 2.  Typical position measurement of dangerous rock mass

    /m
    对比期数 位置1 位置2 位置3 位置4 位置5
    2-1 −0.017 −0.012 −0.028 −0.010 −0.013
    3-1 −0.002 0.005 0.012 0.027 0.010
    2-3 −0.015 −0.017 −0.040 −0.037 −0.023
    下载: 导出CSV
  • [1]

    王尚庆, 徐进军. 滑坡灾害短期临滑预报监测新途径研究[J]. 三峡大学学报(自然科学版),2006,28(5):385 − 388. [WANG Shangqing, XU Jinjun. New method to monitor and forecast landslide disaster in short-term[J]. Journal of China Three Gorges University (Natural Sciences),2006,28(5):385 − 388. (in Chinese with English abstract)

    [2]

    徐进军, 王海城, 罗喻真, 等. 基于三维激光扫描的滑坡变形监测与数据处理[J]. 岩土力学,2010,31(7):2188 − 2191. [XU Jinjun, WANG Haicheng, LUO Yuzhen, et al. Deformation monitoring and data processing of landslide based on 3D laser scanning[J]. Rock and Soil Mechanics,2010,31(7):2188 − 2191. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.07.027

    [3]

    JABOYEDOFF M, OPPIKOFER T, ABELLÁN A, et al. Use of LIDAR in landslide investigations: a review[J]. Natural Hazards,2012,61(1):5 − 28.

    [4]

    褚宏亮, 殷跃平, 曹峰, 等. 大型崩滑灾害变形三维激光扫描监测技术研究[J]. 水文地质工程地质,2015,42(3):128 − 134. [CHU Hongliang, YIN Yueping, CAO Feng, et al. Research on deformation monitoring of large collapses and landslides based on 3D laser scanning technology[J]. Hydrogeology & Engineering Geology,2015,42(3):128 − 134. (in Chinese with English abstract)

    [5]

    刘明坤, 段奇三, 赵晨曦, 等. 三维激光扫描在滑坡灾害变形中的监测应用[J]. 测绘通报,2016(2):147 − 149. [LIU Mingkun, DUAN Qisan, ZHAO Chenxi, et al. Application of 3D laser scanning in monitoring landslide deformation[J]. Bulletin of Surveying and Mapping,2016(2):147 − 149. (in Chinese)

    [6]

    HOBBS P, HUMPHREYS B, REES J, et al. Monitoring the role of landslides in ‘soft cliff’ coastal recession[C]// International Conference on Instability, Planning & Management. Ventnor: Thomas Telford, 2002: 589−600.

    [7]

    董秀军, 黄润秋. 三维激光扫描技术在高陡边坡地质调查中的应用[J]. 岩石力学与工程学报,2006,25(增刊2):3629 − 3635. [DONG Xiujun, HUANG Runqiu. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup2):3629 − 3635. (in Chinese with English abstract)

    [8]

    ABELLÁN A, VILAPLANA J M, CALVET J, et al. Rockfall monitoring by terrestrial laser scanning-case study of the basaltic rock face at Castellfollit de la Roca(Catalonia, Spain)[J]. Natural Hazards and Earth System Sciences,2011,11(3):829 − 841. doi: 10.5194/nhess-11-829-2011

    [9]

    谢谟文, 胡嫚, 杜岩, 等. TLS技术及其在滑坡监测中的应用进展[J]. 国土资源遥感,2014,26(3):8 − 15. [XIE Mowen, HU Man, DU Yan, et al. Application of TLS technique to landslide monitoring: Summarization and prospect[J]. Remote Sensing for Land & Resources,2014,26(3):8 − 15. (in Chinese with English abstract)

    [10]

    裴东东, 官云兰, 张勇峰, 等. 基于车载三维激光扫描系统的滑坡变形监测方法[J]. 中国地质灾害与防治学报,2016,27(1):71 − 76. [PEI Dongdong, GUAN Yunlan, ZHANG Yongfeng, et al. Landslide deformation monitoring method based on vehicular laser scanning system[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):71 − 76. (in Chinese with English abstract)

    [11]

    王文沛, 李滨, 黄波林, 等. 三峡库区近水平厚层斜坡滑动稳定性研究—以重庆巫山箭穿洞危岩为例[J]. 地质力学学报,2016,22(3):725 − 731. [WANG Wenpei, LI Bin, HUANG Bolin, et al. Stability analysis of sub-horizontal thick-bedded slope in Three Gorges Reservoir Area: A Case study of Jianchuandong dangerous rock mass in Wushan, Chongqing[J]. Journal of Geomechanics,2016,22(3):725 − 731. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2016.03.026

    [12]

    WANG G, PHILIPS D, JOYCE J, et al. The integration of TLS and continuous GPS to study landslide deformation: A case study in Puerto Rico[J]. Journal of Geodetic Science,2011,1(1):25 − 34.

    [13]

    朱海雄, 隋立春, 鲁凯翔. 三维激光扫描技术在危岩体变形监测中的应用[J]. 测绘通报,2017(11):68 − 71. [ZHU Haixiong, SUI Lichun, LU Kaixiang. Application of terrestrial 3D laser scanning technology in deformation monitoring of dangerous rock mass[J]. Bulletin of Surveying and Mapping,2017(11):68 − 71. (in Chinese with English abstract)

    [14]

    方良斌, 张宏魏, 詹建勇, 等. 基于移动平均法的危岩点云数据处理及变形分析[J]. 人民长江,2019,50(4):152 − 156. [FANG Liangbin, ZHANG Hongwei, ZHAN Jianyong, et al. Point cloud data processing of dangerous rock and deformation analysis based on moving average method[J]. Yangtze River,2019,50(4):152 − 156. (in Chinese with English abstract)

    [15]

    徐寿志, 程鹏飞, 张玉, 等. 地面三维激光扫描仪的检校与测量精度评定[J]. 测绘通报,2016(2):79 − 83. [XU Shouzhi, CHENG Pengfei, ZHANG Yu, et al. Calibration and accuracy evaluation of terrestrial laser scanner[J]. Bulletin of Surveying and Mapping,2016(2):79 − 83. (in Chinese)

    [16]

    MAT ZAM P M, FUAD N A, YUSOFF A R, et al. Evaluating the performance of terrestrial laser scanning for landslide monitoring[C]//Int Arch Photogramm Remote Sens Spatial Inf Sci, 2018: 35-55.

    [17]

    OPPIKOFER T, JABOYEDOFF M, BLIKRA L, et al. Characterization and monitoring of the Aknes rockslide using terrestrial laser scanning[J]. Natural Hazards and Earth System Sciences,2009(9):1003 − 1019.

    [18]

    ABELLÁN A, JABOYEDOFF M, OPPIKOFER T, et al. Detection of precursory deformation using a TLS application to spatial prediction of rockfalls[J]. Natural Hazards and Earth System Sciences,2009(9):365 − 372.

  • 加载中

(16)

(2)

计量
  • 文章访问数:  1992
  • PDF下载数:  105
  • 施引文献:  0
出版历程
收稿日期:  2020-08-15
修回日期:  2020-12-24
刊出日期:  2021-07-15

目录