冻融循环作用下黄土无侧限抗压强度和微观规律的试验研究

刘乐青, 张吾渝, 张丙印, 谷遇溪, 解邦龙. 冻融循环作用下黄土无侧限抗压强度和微观规律的试验研究[J]. 水文地质工程地质, 2021, 48(4): 109-115. doi: 10.16030/j.cnki.issn.1000-3665.202009064
引用本文: 刘乐青, 张吾渝, 张丙印, 谷遇溪, 解邦龙. 冻融循环作用下黄土无侧限抗压强度和微观规律的试验研究[J]. 水文地质工程地质, 2021, 48(4): 109-115. doi: 10.16030/j.cnki.issn.1000-3665.202009064
LIU Leqing, ZHANG Wuyu, ZHANG Bingyin, GU Yuxi, XIE Banglong. Effect of freezing-thawing cycles on mechanical properties and microscopic mechanisms of loess[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 109-115. doi: 10.16030/j.cnki.issn.1000-3665.202009064
Citation: LIU Leqing, ZHANG Wuyu, ZHANG Bingyin, GU Yuxi, XIE Banglong. Effect of freezing-thawing cycles on mechanical properties and microscopic mechanisms of loess[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 109-115. doi: 10.16030/j.cnki.issn.1000-3665.202009064

冻融循环作用下黄土无侧限抗压强度和微观规律的试验研究

  • 基金项目: 青海省科技计划项目(2017-ZJ-792);国家自然科学基金项目(51768060);青海省创新服务平台建设专项基金项目;青海大学土木工程创新基金项目(TC2020-02)
详细信息
    作者简介: 刘乐青(1999-),女,硕士研究生,从事岩土及地下工程研究。E-mail: qhdxllq@163.com
    通讯作者: 张吾渝(1969-),女,教授,硕士,从事岩土及地下工程研究。E-mail: qdzwy@163.com
  • 中图分类号: P642.11+6; TU411.6

Effect of freezing-thawing cycles on mechanical properties and microscopic mechanisms of loess

More Information
  • 青海地处多年冻土地区,属于青藏高原大陆性气候带,冻融循环是路基和地基基础的一种常见破坏因素,为研究冻融循环作用对青海地区实际工程的影响,揭示冻融循环作用对其损害的机理,通过对青海西宁地区原状黄土和重塑黄土进行冻融循环试验、无侧限抗压强度试验和电镜扫描试验,分析不同冻融温度和不同冻融循环次数对原状黄土、重塑黄土无侧限抗压强度和微观结构的影响。结果表明:当黄土经历0~6次冻融循环时,原状黄土和重塑黄土的强度逐渐降低,而8~10次冻融循环后其强度先增大后趋于稳定;原状黄土的强度随冻融温度降低而降低,而重塑黄土的强度随冻融温度降低先增大后减小;从微观角度分析,冻融温度的降低和冻融循环次数的增加,均导致黄土大颗粒逐渐分解为小颗粒,颗粒的排列方式发生改变。

  • 加载中
  • 图 1  青海西宁近几年最低气温

    Figure 1. 

    图 2  黄土的斜向剪裂破坏

    Figure 2. 

    图 3  原状黄土的应力-应变曲线

    Figure 3. 

    图 4  冻融温度为±9.1℃时不同冻融循环次数下原状黄土的微观图像(×500)

    Figure 4. 

    图 5  冻融温度为±19.1℃时不同冻融循环次数下原状黄土的微观图像(×500)

    Figure 5. 

    图 6  不同冻融温度下原状黄土的微观图像

    Figure 6. 

    图 7  重塑黄土的应力-应变曲线

    Figure 7. 

    图 8  冻融温度为±19.1 ℃时不同冻融循环次数下重塑黄土的微观图像(×500)

    Figure 8. 

    表 1  基本物理性质指标

    Table 1.  Basic physical properties

    天然
    含水率/%
    天然密度/
    (g·cm−3
    最大干密度/
    (g·cm−3
    最优
    含水率/%
    液限/% 塑限/% 塑性指数
    13.1 1.5 1.7 14.2 25.0 13.8 11.1
    下载: 导出CSV
  • [1]

    张吾渝. 黄土工程[M]. 北京: 中国建材工业出版社, 2018.

    ZHANG Wuyu. Loess engineering[M]. Beijing: China Building Material Industry Publishing House, 2018. (in Chinese)

    [2]

    李宝平, 平高权, 张玉, 等. 平面应变条件下冻融循环对黄土力学性质的影响[J/OL]. 土木与环境工程学报(中英文): 1-8 [2020-09-17].

    LI Baoping, PING Gaoquan, ZHANG Yu, et al. Effects of freeze-thaw cycles on mechanical properties of loess under plane strain[[J/OL]. Journal of Civil and Environmental Engineering: 1-8[2020-09-17]. http://kns.cnki.net/kcms/detail/50.1218.TU.20200423.1009.002.html. (in Chinese with English abstract)

    [3]

    张遂, 匡航, 靳占英, 等. 高含水量冻粉黏土应力-应变曲线特性的试验研究[J]. 水文地质工程地质,2020,47(5):116 − 124. [ZHANG Sui, KUANG Hang, JIN Zhanying, et al. An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content[J]. Hydrogeology & Engineering Geology,2020,47(5):116 − 124. (in Chinese with English abstract)

    [4]

    周有禄, 武小鹏, 李奋, 等. 冻融循环作用下重塑黄土强度劣化试验研究[J]. 铁道建筑,2018,58(10):78 − 80. [ZHOU Youlu, WU Xiaopeng, LI Fen, et al. Experimental study on strength deterioration of remolded loess under freeze-thaw cycles[J]. Railway Engineering,2018,58(10):78 − 80. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-1995.2018.10.19

    [5]

    LI G Y, WANG F, MA W, et al. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles[J]. Cold Regions Science and Technology,2018,151:159 − 167. doi: 10.1016/j.coldregions.2018.03.021

    [6]

    柯睿, 汪洪星, 谈云志, 等. 冻融循环对固化淤泥土力学性质的影响[J]. 长江科学院院报,2019,36(8):136 − 139. [KE Rui, WANG Hongxing, TAN Yunzhi, et al. Effect of freeze-thaw cycle on mechanical properties of solidified silt[J]. Journal of Yangtze River Scientific Research Institute,2019,36(8):136 − 139. (in Chinese with English abstract) doi: 10.11988/ckyyb.20180046

    [7]

    崔宏环, 秦晓鹏, 王文涛, 等. 冻融条件下非饱和路基土的强度及微观特性研究[J]. 冰川冻土,2019,41(5):1115 − 1121. [CUI Honghuan, QIN Xiaopeng, WANG Wentao, et al. Study on the strength and microscopic characteristics of unsaturated subgrade soil under freezing-thawing conditions[J]. Journal of Glaciology and Geocryology,2019,41(5):1115 − 1121. (in Chinese with English abstract)

    [8]

    杨更社, 尤梓玉, 吴迪, 等. 冻融环境下原状黄土孔径分布与其力学特性关系的试验研究[J]. 煤炭工程,2019,51(3):107 − 112. [YANG Gengshe, YOU Ziyu, WU Di, et al. Experimental study on the relation of undisturbed loess' pore size distribution and mechanical property under freezing-thawing environment[J]. Coal Engineering,2019,51(3):107 − 112. (in Chinese with English abstract)

    [9]

    魏尧, 杨更社, 叶万军. 冻结温度对冻融黄土力学特性的影响规律研究[J]. 长江科学院院报,2018,35(8):61 − 66. [WEI Yao, YANG Gengshe, YE Wanjun. Impact of freezing temperature on mechanical properties of loess under cyclic freezing and thawing[J]. Journal of Yangtze River Scientific Research Institute,2018,35(8):61 − 66. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170188

    [10]

    叶万军, 刘宽, 杨更社, 等. 冻融循环作用下黄土抗剪强度劣化试验研究[J]. 科学技术与工程,2018,18(3):313 − 318. [YE Wanjun, LIU Kuan, YANG Gengshe, et al. Experimental study on shear strength deterioration of loess under freeze-thaw cycling[J]. Science Technology and Engineering,2018,18(3):313 − 318. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2018.03.051

    [11]

    叶万军, 李长清, 董西好, 等. 冻融环境下黄土微结构损伤识别与宏观力学响应规律研究[J]. 冰川冻土,2018,40(3):546 − 555. [YE Wanjun, LI Changqing, DONG Xihao, et al. Study on damage identification of loess microstructure and macro mechanical response under freezing and thawing conditions[J]. Journal of Glaciology and Geocryology,2018,40(3):546 − 555. (in Chinese with English abstract)

    [12]

    张泽, 周泓, 秦琦, 等. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版),2017,47(3):839 − 847. [ZHANG Ze, ZHOU Hong, QIN Qi, et al. Experimental study on porosity characteristics of loess under freezing-thawing cycle[J]. Journal of Jilin University (Earth Science Edition),2017,47(3):839 − 847. (in Chinese with English abstract)

    [13]

    赵鲁庆, 杨更社, 吴迪, 等. 冻融黄土微观结构变化规律及分形特性研究[J]. 地下空间与工程学报,2019,15(6):1680 − 1690. [ZHAO Luqing, YANG Gengshe, WU Di, et al. Micro structure and fractal characteristics loess under freeze-thaw cycles[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1680 − 1690. (in Chinese with English abstract)

    [14]

    肖东辉, 冯文杰, 张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土,2014,36(4):907 − 912. [XIAO Donghui, FENG Wenjie, ZHANG Ze. The changing rule of loess’s porosity under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology,2014,36(4):907 − 912. (in Chinese with English abstract)

    [15]

    肖东辉, 冯文杰, 张泽, 等. 冻融循环作用下黄土渗透性与其结构特征关系研究[J]. 水文地质工程地质,2015,42(4):43 − 49. [XIAO Donghui, FENG Wenjie, ZHANG Ze, et al. Research on the relationship between permeability and construction feature of loess under the freeze-thaw cycles[J]. Hydrogeology & Engineering Geology,2015,42(4):43 − 49. (in Chinese with English abstract)

    [16]

    倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土,2014,36(4):922 − 927. [NI Wankui, SHI Huaqiang. Influence of freezing-thawing cycles on micro-structure and shear strength of loess[J]. Journal of Glaciology and Geocryology,2014,36(4):922 − 927. (in Chinese with English abstract) doi: 10.7522/j.issn.1000-0240.2014.0111

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1140
  • PDF下载数:  101
  • 施引文献:  0
出版历程
收稿日期:  2020-09-28
修回日期:  2021-01-11
刊出日期:  2021-07-15

目录