Evaporation between saturated bare soil and water – an analysis based on field observations and energy balance consideration
-
摘要:
准确计算裸土蒸发量对研究旱区地下水文循环过程具有重要意义。潜在蒸发量是计算裸土实际蒸发量的重要指标,由于饱和裸土蒸发量(PEs)难以获取,因此常用水面蒸发量(PEw)替代,但该方法的有效性有待验证。本研究基于蒸渗仪实测蒸发量、气象要素等野外观测数据,对比了2种饱和砂土与水面蒸发量昼夜变化特征及其差异。实测结果表明,年内平均饱和裸土蒸发量大于水面蒸发量;春夏两季蒸发强烈,两者差异最为显著;在天尺度上,水面蒸发量曲线滞后于饱和裸土。有效能量(Rn−Gs/Nw)是决定潜在蒸发量差异的主要因素。与纯水相比,饱和裸土中固相颗粒的存在,削弱了短波辐射的穿透能力,影响净辐射量(Rn),并导致土体热容降低,影响土面总热通量(Gs)。计算结果表明,饱和裸土可用于蒸发的有效能量大于水面(Rn,s−Gs>Rn,w−Nw),因此饱和裸土蒸发量较大;由于饱和裸土剖面升温更快,水体储热变化量(Nw)曲线滞后于土面总热通量(Gs),因此饱和裸土日蒸发量峰值也早于水面出现。该研究为准确计算实际蒸发量、提升地下水资源估测精度提供了理论依据。
Abstract:Accurate estimation of evaporation rate in bare soil is of great significance for hydrogeological processes in arid regions. Potential evaporation has been regard as a standard to estimate the actual evaporation rate. In applications, evaporation rate in the saturated bare soil (PEs) is often replaced by water evaporation rate (PEw). Whether this simplification is adequate needs to be verified. This research is based on the measured potential evaporation rates (by lysimeters) and meteorological elements. The results show that PEs is higher than PEw on a yearly scale, and the differences are more obvious especially in spring and summer. In summer, PEs is greater than PEw at day but smaller at night. Besides, the curve of PEw lags behind PEs. Detailed analyses of evaporation dynamics over fully saturated bare sandy soils and water surface are provided by energy balance considerations. PE dynamics are mainly governed by available energy (Rn−Gs/Nw). Compared with water, the existence of solid particles in the saturated bare soil results in a smaller albedo and heat capacity, which has a further influence on Rn and Gs. Available energy for the saturated bare sandy soil is higher than that of water (Rn,s−Gs>Rn,w−Nw), resulting in a higher rate for PEs. The peak value of Gs exists earlier than Nw, leading to lag of PEw behind PEs. This research provides a theoretical basis for accurate calculation of the actual evaporation rate and groundwater resources.
-
Key words:
- potential evaporation /
- lysimeter /
- saturated bare soil evaporation /
- water evaporation
-
表 1 砂样颗粒分析
Table 1. Particle compositions of sands in the lysimeter
粒径 /mm 粒径组成/% ≥2.00 2.00~0.50 0.50~0.25 0.25~0.075 <0.075 细砂 0 0 32.7 57.5 9.8 粗砂 21.5 43.7 24.8 8.9 1.1 表 2 砂样水热参数
Table 2. Hydraulic and thermal parameters of sands in the lysimeter
砂样 饱和含水率/(cm3·cm−3) 热容/(MJ·m−3·K−1) 细砂 0.39 2.2 粗砂 0.37 2.1 -
[1] 刘昌明, 孙睿. 水循环的生态学方面: 土壤-植被-大气系统水分能量平衡研究进展[J]. 水科学进展,1999,10(3):251 − 259. [LIU Changming, SUN Rui. Ecological aspects of water cycle: advances in soil vegetation atmosphere of energy and water fuxes[J]. Advances in Water Science,1999,10(3):251 − 259. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-6791.1999.03.007
[2] ABBOTT B W, BISHOP K, ZARNETSKE J P, et al. Human domination of the global water cycle absent from depictions and perceptions[J]. Nature Geoscience,2019,12(7):533 − 540. doi: 10.1038/s41561-019-0374-y
[3] LI N, YUE X Y, WANG W K, et al. Inverse estimation of spatiotemporal flux boundary conditions in unsaturated water flow modeling[J]. Water Resources Research,2021,57(1):e2020WR028030.
[4] 刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报,2011,66(5):579 − 588. [LIU Changming, ZHANG Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica,2011,66(5):579 − 588. (in Chinese with English abstract) doi: 10.11821/xb201105001
[5] COENDERS-GERRITS A M J, VAN DER ENT R J, BOGAARD T A, et al. Uncertainties in transpiration estimates[J]. Nature,2014,506:E1 − E2. doi: 10.1038/nature12925
[6] 席丹, 王文科, 赵明, 等. 玛纳斯河流域山前平原区蒸散发时空异质性分析[J]. 水文地质工程地质,2020,47(2):25 − 34. [XI Dan, WANG Wenke, ZHAO Ming, et al. Analyses of the spatio-temporal heterogeneity of evapotranspiration in the piedmont of the Manas River Basin[J]. Hydrogeology & Engineering Geology,2020,47(2):25 − 34. (in Chinese with English abstract)
[7] MA Z T, WANG W K, ZHANG Z Y, et al. Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China[J]. Hydrogeology Journal,2019,27(7):2707 − 2718. doi: 10.1007/s10040-019-02012-0
[8] GONG C C, WANG W K, ZHANG Z Y, et al. Comparison of field methods for estimating evaporation from bare soil using lysimeters in a semi-arid area[J]. Journal of Hydrology,2020,590:125334. doi: 10.1016/j.jhydrol.2020.125334
[9] ZHANG Z Y, WANG W K, WANG Z F, et al. Evaporation from bare ground with different water-table depths based on an in situ experiment in Ordos Plateau, China[J]. Hydrogeology Journal,2018,26(5):1683 − 1691. doi: 10.1007/s10040-018-1751-0
[10] THORNTHWAITE C W. An approach toward a rational classification of climate[J]. Geographical Review,1948,38(1):55. doi: 10.2307/210739
[11] 刘佩贵, 夏艳, 尚熳廷. 不同质地裸土潜水蒸发估算方法[J]. 农业工程学报,2020,36(1):148 − 153. [LIU Peigui, XIA Yan, SHANG Manting. Estimation methods of phreatic evaporation for different textures in bare soil area[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(1):148 − 153. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.01.017
[12] CHANZY A, BRUCKLER L. Significance of soil surface moisture with respect to daily bare soil evaporation[J]. Water Resources Research,1993,29(4):1113 − 1125. doi: 10.1029/92WR02747
[13] PENMAN H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1948,193(1032):120 − 145.
[14] MCJANNET D L, COOK F J, BURN S. Comparison of techniques for estimating evaporation from an irrigation water storage[J]. Water Resources Research,2013,49(3):1415 − 1428. doi: 10.1002/wrcr.20125
[15] SHUTTLEWORTH W J. Evaporation models in the global water budget[C]//Variations in the global water budget. Dordrecht: Springer Netherlands, 1983: 147-171.
[16] MAHRT L, EK M. The influence of atmospheric stability on potential evaporation[J]. Journal of Climate and Applied Meteorology,1984,23(2):222 − 234. doi: 10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2
[17] KESSOMKIAT W, FRANSSEN H J H, GRAF A, et al. Estimating random errors of eddy covariance data: an extended two-tower approach[J]. Agricultural and Forest Meteorology,2013,171/172:203 − 219. doi: 10.1016/j.agrformet.2012.11.019
[18] GRANGER R J. An examination of the concept of potential evaporation[J]. Journal of Hydrology,1989,111(1/2/3/4):9 − 19.
[19] KIRONO D G C, JONES R N, CLEUGH H A. Pan-evaporation measurements and Morton-point potential evaporation estimates in Australia: are their trends the same?[J]. International Journal of Climatology,2009,29(5):711 − 718. doi: 10.1002/joc.1731
[20] FEDERER C A, VÖRÖSMARTY C, FEKETE B. Intercomparison of methods for calculating potential evaporation in regional and global water balance models[J]. Water Resources Research,1996,32(7):2315 − 2321. doi: 10.1029/96WR00801
[21] MONTEITH J L, UNSWORTH M H. Micrometeorology[C]//Principles of environmental physics. Amsterdam: Elsevier, 2013: 289-320.
[22] 邢旭光, 史文娟, 王全九. 对常用潜水蒸发经验模型中E0值的探讨[J]. 干旱地区农业研究,2013,31(4):57 − 60. [XING Xuguang, SHI Wenjuan, WANG Quanjiu. Discussion on E0 value in common groundwater evaporation empirical models[J]. Agricultural Research in the Arid Areas,2013,31(4):57 − 60. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7601.2013.04.011
[23] LI W X, WANG W, BRUNNER P, et al. Evaporation over saturated bare soil: the role of soil texture[C]//EGU General Assembly Conference Abstracts, 2020: 412.
[24] 申圆圆, 李俊亭, 王文科, 等. 全自动蒸发降水计量用数据采集装置: CN203721111U[P]. 2014-07-16.
SHEN Yuanyuan, LI Junting, WANG Wenke, et al. Automatic data acquisition device for measurement of evaporation and rainfall: CN203721111U[P]. 2014-07-16. (in Chinese)
[25] SHELTON M L. Hydroclimatology: perspectives and applications[M]. Cambridge: Cambridge University Press, 2009.
[26] LI W X, BRUNNER P, HENDRICKS FRANSSEN H J, et al. Potential evaporation dynamics over saturated bare soil and an open water surface[J]. Journal of Hydrology,2020,590:125140. doi: 10.1016/j.jhydrol.2020.125140
[27] GIANNIOU S K, ANTONOPOULOS V Z. Evaporation and energy budget in Lake Vegoritis, Greece[J]. Journal of Hydrology,2007,345(3/4):212 − 223.
[28] GALLEGO-ELVIRA B, BAILLE A, MARTIN-GORRIZ B, et al. Energy balance and evaporation loss of an irrigation reservoir equipped with a suspended cover in a semiarid climate (south-eastern Spain)[J]. Hydrological Processes,2011,25(11):1694 − 1703. doi: 10.1002/hyp.7929
[29] 刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京: 科学出版社, 2006.
LIU Wei, FAN Aiwu, HUANG Xiaoming. Theory and application of heat and mass transfer in porous media[M]. Beijing: Science Press, 2006. (in Chinese)