基于野外观测与能量守恒原理分析饱和裸土与水面蒸发量的差异

李婉歆, 尹红美, 王文科, 卢艳莹, 王艺柯. 基于野外观测与能量守恒原理分析饱和裸土与水面蒸发量的差异[J]. 水文地质工程地质, 2021, 48(3): 38-44. doi: 10.16030/j.cnki.issn.1000-3665.202012028
引用本文: 李婉歆, 尹红美, 王文科, 卢艳莹, 王艺柯. 基于野外观测与能量守恒原理分析饱和裸土与水面蒸发量的差异[J]. 水文地质工程地质, 2021, 48(3): 38-44. doi: 10.16030/j.cnki.issn.1000-3665.202012028
LI Wanxin, YIN Hongmei, WANG Wenke, LU Yanying, WANG Yike. Evaporation between saturated bare soil and water – an analysis based on field observations and energy balance consideration[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 38-44. doi: 10.16030/j.cnki.issn.1000-3665.202012028
Citation: LI Wanxin, YIN Hongmei, WANG Wenke, LU Yanying, WANG Yike. Evaporation between saturated bare soil and water – an analysis based on field observations and energy balance consideration[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 38-44. doi: 10.16030/j.cnki.issn.1000-3665.202012028

基于野外观测与能量守恒原理分析饱和裸土与水面蒸发量的差异

  • 基金项目: 国家重点研发计划项目(2018YFC0406504);国家自然科学基金重点项目(41230314);长安大学研究生短期出国访学项目(300104190103)
详细信息
    作者简介: 李婉歆(1991-),女,博士研究生,主要从事旱区蒸发问题研究。E-mail: appleliwanxin01@163.com
    通讯作者: 王文科(1962-),男,教授,博士生导师,主要从事旱区地下水文过程与生态效应研究。E-mail: wenkew@chd.edu.cn
  • 中图分类号: P641.2

Evaporation between saturated bare soil and water – an analysis based on field observations and energy balance consideration

More Information
  • 准确计算裸土蒸发量对研究旱区地下水文循环过程具有重要意义。潜在蒸发量是计算裸土实际蒸发量的重要指标,由于饱和裸土蒸发量(PEs)难以获取,因此常用水面蒸发量(PEw)替代,但该方法的有效性有待验证。本研究基于蒸渗仪实测蒸发量、气象要素等野外观测数据,对比了2种饱和砂土与水面蒸发量昼夜变化特征及其差异。实测结果表明,年内平均饱和裸土蒸发量大于水面蒸发量;春夏两季蒸发强烈,两者差异最为显著;在天尺度上,水面蒸发量曲线滞后于饱和裸土。有效能量(RnGs/Nw)是决定潜在蒸发量差异的主要因素。与纯水相比,饱和裸土中固相颗粒的存在,削弱了短波辐射的穿透能力,影响净辐射量(Rn),并导致土体热容降低,影响土面总热通量(Gs)。计算结果表明,饱和裸土可用于蒸发的有效能量大于水面(Rn,sGs>Rn,w−​​​​​​​Nw),因此饱和裸土蒸发量较大;由于饱和裸土剖面升温更快,水体储热变化量(Nw)曲线滞后于土面总热通量(Gs),因此饱和裸土日蒸发量峰值也早于水面出现。该研究为准确计算实际蒸发量、提升地下水资源估测精度提供了理论依据。

  • 加载中
  • 图 1  潜在蒸发量测量装置示意图

    Figure 1. 

    图 2  月累计降水量、月平均温度以及细砂、粗砂和水面的月累计实测潜在蒸发量

    Figure 2. 

    图 3  饱和细砂、粗砂与水面潜热通量(LE)计算结果与实测曲线及差值

    Figure 3. 

    图 4  饱和细砂、饱和粗砂与水面月平均净辐射量、热通量/热储量、显热通量昼夜变化

    Figure 4. 

    图 5  月平均剖面温度昼夜变化

    Figure 5. 

    表 1  砂样颗粒分析

    Table 1.  Particle compositions of sands in the lysimeter

    粒径 /mm 粒径组成/%
    ≥2.00 2.00~0.50 0.50~0.25 0.25~0.075 <0.075
    细砂 0 0 32.7 57.5 9.8
    粗砂 21.5 43.7 24.8 8.9 1.1
    下载: 导出CSV

    表 2  砂样水热参数

    Table 2.  Hydraulic and thermal parameters of sands in the lysimeter

    砂样 饱和含水率/(cm3·cm−3 热容/(MJ·m−3·K−1
    细砂 0.39 2.2
    粗砂 0.37 2.1
    下载: 导出CSV
  • [1]

    刘昌明, 孙睿. 水循环的生态学方面: 土壤-植被-大气系统水分能量平衡研究进展[J]. 水科学进展,1999,10(3):251 − 259. [LIU Changming, SUN Rui. Ecological aspects of water cycle: advances in soil vegetation atmosphere of energy and water fuxes[J]. Advances in Water Science,1999,10(3):251 − 259. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-6791.1999.03.007

    [2]

    ABBOTT B W, BISHOP K, ZARNETSKE J P, et al. Human domination of the global water cycle absent from depictions and perceptions[J]. Nature Geoscience,2019,12(7):533 − 540. doi: 10.1038/s41561-019-0374-y

    [3]

    LI N, YUE X Y, WANG W K, et al. Inverse estimation of spatiotemporal flux boundary conditions in unsaturated water flow modeling[J]. Water Resources Research,2021,57(1):e2020WR028030.

    [4]

    刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报,2011,66(5):579 − 588. [LIU Changming, ZHANG Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica,2011,66(5):579 − 588. (in Chinese with English abstract) doi: 10.11821/xb201105001

    [5]

    COENDERS-GERRITS A M J, VAN DER ENT R J, BOGAARD T A, et al. Uncertainties in transpiration estimates[J]. Nature,2014,506:E1 − E2. doi: 10.1038/nature12925

    [6]

    席丹, 王文科, 赵明, 等. 玛纳斯河流域山前平原区蒸散发时空异质性分析[J]. 水文地质工程地质,2020,47(2):25 − 34. [XI Dan, WANG Wenke, ZHAO Ming, et al. Analyses of the spatio-temporal heterogeneity of evapotranspiration in the piedmont of the Manas River Basin[J]. Hydrogeology & Engineering Geology,2020,47(2):25 − 34. (in Chinese with English abstract)

    [7]

    MA Z T, WANG W K, ZHANG Z Y, et al. Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China[J]. Hydrogeology Journal,2019,27(7):2707 − 2718. doi: 10.1007/s10040-019-02012-0

    [8]

    GONG C C, WANG W K, ZHANG Z Y, et al. Comparison of field methods for estimating evaporation from bare soil using lysimeters in a semi-arid area[J]. Journal of Hydrology,2020,590:125334. doi: 10.1016/j.jhydrol.2020.125334

    [9]

    ZHANG Z Y, WANG W K, WANG Z F, et al. Evaporation from bare ground with different water-table depths based on an in situ experiment in Ordos Plateau, China[J]. Hydrogeology Journal,2018,26(5):1683 − 1691. doi: 10.1007/s10040-018-1751-0

    [10]

    THORNTHWAITE C W. An approach toward a rational classification of climate[J]. Geographical Review,1948,38(1):55. doi: 10.2307/210739

    [11]

    刘佩贵, 夏艳, 尚熳廷. 不同质地裸土潜水蒸发估算方法[J]. 农业工程学报,2020,36(1):148 − 153. [LIU Peigui, XIA Yan, SHANG Manting. Estimation methods of phreatic evaporation for different textures in bare soil area[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(1):148 − 153. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.01.017

    [12]

    CHANZY A, BRUCKLER L. Significance of soil surface moisture with respect to daily bare soil evaporation[J]. Water Resources Research,1993,29(4):1113 − 1125. doi: 10.1029/92WR02747

    [13]

    PENMAN H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1948,193(1032):120 − 145.

    [14]

    MCJANNET D L, COOK F J, BURN S. Comparison of techniques for estimating evaporation from an irrigation water storage[J]. Water Resources Research,2013,49(3):1415 − 1428. doi: 10.1002/wrcr.20125

    [15]

    SHUTTLEWORTH W J. Evaporation models in the global water budget[C]//Variations in the global water budget. Dordrecht: Springer Netherlands, 1983: 147-171.

    [16]

    MAHRT L, EK M. The influence of atmospheric stability on potential evaporation[J]. Journal of Climate and Applied Meteorology,1984,23(2):222 − 234. doi: 10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2

    [17]

    KESSOMKIAT W, FRANSSEN H J H, GRAF A, et al. Estimating random errors of eddy covariance data: an extended two-tower approach[J]. Agricultural and Forest Meteorology,2013,171/172:203 − 219. doi: 10.1016/j.agrformet.2012.11.019

    [18]

    GRANGER R J. An examination of the concept of potential evaporation[J]. Journal of Hydrology,1989,111(1/2/3/4):9 − 19.

    [19]

    KIRONO D G C, JONES R N, CLEUGH H A. Pan-evaporation measurements and Morton-point potential evaporation estimates in Australia: are their trends the same?[J]. International Journal of Climatology,2009,29(5):711 − 718. doi: 10.1002/joc.1731

    [20]

    FEDERER C A, VÖRÖSMARTY C, FEKETE B. Intercomparison of methods for calculating potential evaporation in regional and global water balance models[J]. Water Resources Research,1996,32(7):2315 − 2321. doi: 10.1029/96WR00801

    [21]

    MONTEITH J L, UNSWORTH M H. Micrometeorology[C]//Principles of environmental physics. Amsterdam: Elsevier, 2013: 289-320.

    [22]

    邢旭光, 史文娟, 王全九. 对常用潜水蒸发经验模型中E0值的探讨[J]. 干旱地区农业研究,2013,31(4):57 − 60. [XING Xuguang, SHI Wenjuan, WANG Quanjiu. Discussion on E0 value in common groundwater evaporation empirical models[J]. Agricultural Research in the Arid Areas,2013,31(4):57 − 60. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7601.2013.04.011

    [23]

    LI W X, WANG W, BRUNNER P, et al. Evaporation over saturated bare soil: the role of soil texture[C]//EGU General Assembly Conference Abstracts, 2020: 412.

    [24]

    申圆圆, 李俊亭, 王文科, 等. 全自动蒸发降水计量用数据采集装置: CN203721111U[P]. 2014-07-16.

    SHEN Yuanyuan, LI Junting, WANG Wenke, et al. Automatic data acquisition device for measurement of evaporation and rainfall: CN203721111U[P]. 2014-07-16. (in Chinese)

    [25]

    SHELTON M L. Hydroclimatology: perspectives and applications[M]. Cambridge: Cambridge University Press, 2009.

    [26]

    LI W X, BRUNNER P, HENDRICKS FRANSSEN H J, et al. Potential evaporation dynamics over saturated bare soil and an open water surface[J]. Journal of Hydrology,2020,590:125140. doi: 10.1016/j.jhydrol.2020.125140

    [27]

    GIANNIOU S K, ANTONOPOULOS V Z. Evaporation and energy budget in Lake Vegoritis, Greece[J]. Journal of Hydrology,2007,345(3/4):212 − 223.

    [28]

    GALLEGO-ELVIRA B, BAILLE A, MARTIN-GORRIZ B, et al. Energy balance and evaporation loss of an irrigation reservoir equipped with a suspended cover in a semiarid climate (south-eastern Spain)[J]. Hydrological Processes,2011,25(11):1694 − 1703. doi: 10.1002/hyp.7929

    [29]

    刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京: 科学出版社, 2006.

    LIU Wei, FAN Aiwu, HUANG Xiaoming. Theory and application of heat and mass transfer in porous media[M]. Beijing: Science Press, 2006. (in Chinese)

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1860
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2020-12-13
修回日期:  2021-02-25
刊出日期:  2021-05-15

目录