冻融循环条件下含软弱夹层隧道围岩力学性质及破坏特征

张立. 冻融循环条件下含软弱夹层隧道围岩力学性质及破坏特征[J]. 水文地质工程地质, 2021, 48(5): 74-80. doi: 10.16030/j.cnki.issn.1000-3665.202102035
引用本文: 张立. 冻融循环条件下含软弱夹层隧道围岩力学性质及破坏特征[J]. 水文地质工程地质, 2021, 48(5): 74-80. doi: 10.16030/j.cnki.issn.1000-3665.202102035
ZHANG Li. On mechanical properties and failure characteristics of surrounding rock of tunnel with weak interlayer under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 74-80. doi: 10.16030/j.cnki.issn.1000-3665.202102035
Citation: ZHANG Li. On mechanical properties and failure characteristics of surrounding rock of tunnel with weak interlayer under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 74-80. doi: 10.16030/j.cnki.issn.1000-3665.202102035

冻融循环条件下含软弱夹层隧道围岩力学性质及破坏特征

  • 基金项目: 2019年中咨集团资助项目(KY201903)
详细信息
    作者简介: 张立(1982-),男,硕士,高级工程师,从事隧道与边坡研究设计工作。E-mail:changshan0606992@163.com
  • 中图分类号: TU458+.3

On mechanical properties and failure characteristics of surrounding rock of tunnel with weak interlayer under freezing-thawing cycles

  • 川藏铁路沿线隧道围岩中常存在大量软弱夹层,且岩体受严寒气候影响较大。为研究夹层倾角和冻融循环对隧道围岩力学性质的影响,室内制备了不同软弱夹层倾角、不同冻融循环次数条件下的互层岩体,并对含软弱夹层岩体展开了单轴压缩试验。研究发现:(1)含软弱夹层岩体的硬岩部分变形较小,而软岩夹层部分的破坏更加剧烈。夹层倾角较小时(β=0°、30°)岩体破坏后裂纹与夹层倾角接近平行,当夹层倾角较大时岩体破裂面与夹层呈X型交叉状;冻融循环次数越多,岩体的破坏程度越强烈。(2)随着夹层倾角的增大,岩体的单轴抗压强度和弹性模量先减小后增大;当夹层倾角β=45°时,抗压强度和弹性模量最小,抗压强度较含水平软弱夹层岩体降低35.27%,弹性模量降低34.84%。(3)冻融循环劣化了夹层岩体的力学性质,岩体承载能力随着冻融循环次数的增加而减弱,但塑性变形能力有所增强。在冻融循环作用的影响下,岩体抗压强度、弹性模量呈负指数型递减,峰值点应变则呈线性增大。

  • 加载中
  • 图 1  岩体试样

    Figure 1. 

    图 2  典型夹层岩体单轴应力-应变曲线及变形破坏过程

    Figure 2. 

    图 3  不同状态下含软弱夹层岩体应力-应变曲线

    Figure 3. 

    图 4  岩体力学参数随冻融循环次数变化关系

    Figure 4. 

    表 1  含软弱夹层岩体物理参数

    Table 1.  Physical parameters of rock mass containing weak interlayer

    分组直径/mm高度/mm平均密度/(g·cm−3夹层厚度/mm夹层倾角/(°)
    A50.1299.752.3719.950
    B50.08100.542.3620.7030
    C49.86100.132.3419.8045
    D50.32100.332.3220.0360
    下载: 导出CSV

    表 2  不同试验条件下岩体破坏形态特征

    Table 2.  Faliure characteristics of rock mass specimen under different testing conditions

    试验条件n=0n=10n=20n=30
    β=0°
    β=30°
    β=45°
    β=60°
    下载: 导出CSV

    表 3  不同条件下含软弱夹层岩体力学参数

    Table 3.  Mechanical parameters of rock mass with weak interlayer under different conditions

    分组倾角/(°)循环次数抗压强度/MPa峰值点应变/%弹性模量/GPa
    A0 016.910.763.86
    1013.701.212.70
    2011.731.232.03
    3010.511.501.55
    B30 014.820.633.53
    1011.060.712.34
    20 8.710.761.71
    30 7.791.011.16
    C45 011.070.553.03
    10 8.850.751.78
    20 7.530.801.11
    30 6.801.190.86
    D60 015.550.643.63
    1012.820.792.44
    2010.600.881.81
    30 9.581.141.27
    下载: 导出CSV
  • [1]

    田四明, 巩江峰. 截至2019年底中国铁路隧道情况统计[J]. 隧道建设(中英文),2020,40(2):292 − 297. [TIAN Siming, GONG Jiangfeng. Statistics of railway tunnels in China as of the end of 2019[J]. Tunnel Construction,2020,40(2):292 − 297. (in Chinese)

    [2]

    郑宗溪, 孙其清. 川藏铁路隧道工程[J]. 隧道建设,2017,37(8):1049 − 1054. [ZHENG Zongxi, SUN Qiqing. Sichuan-Tibet Railway tunnel engineering[J]. Tunnel Construction,2017,37(8):1049 − 1054. (in Chinese)

    [3]

    宋章, 张广泽, 蒋良文, 等. 川藏铁路主要地质灾害特征及地质选线探析[J]. 铁道标准设计,2016,60(1):14 − 19. [SONG Zhang, ZHANG Guangze, JIANG Liangwen, et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet Railway[J]. Railway Standard Design,2016,60(1):14 − 19. (in Chinese with English abstract)

    [4]

    薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,2020,39(3):445 − 468. [XUE Yiguo, KONG Fanmeng, YANG Weimin, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):445 − 468. (in Chinese with English abstract)

    [5]

    郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质,2017,31(5):877 − 889. [GUO Changbao, ZHANG Yongshuang, JIANG Liangwen, et al. Discussion on the environmental and engineering geological problems along the Sichuan-Tibet Railway and its adjacent area[J]. Geoscience,2017,31(5):877 − 889. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.05.001

    [6]

    ZUO J P, WANG Z F, ZHOU H W, et al. Failure behavior of a rock-coal-rock combined body with a weak coal interlayer[J]. International Journal of Mining Science and Technology,2013,23(6):907 − 912. doi: 10.1016/j.ijmst.2013.11.005

    [7]

    HUANG F, ZHU H H, XU Q W, et al. The effect of weak interlayer on the failure pattern of rock mass around tunnel-Scaled model tests and numerical analysis[J]. Tunnelling and Underground Space Technology,2013,35:207 − 218. doi: 10.1016/j.tust.2012.06.014

    [8]

    郭朋瑜, 吉锋, 何双, 等. 节理分布位置对岩体剪切破裂特征影响试验研究[J]. 水文地质工程地质,2019,46(3):81 − 87. [GUO Pengyu, JI Feng, HE Shuang, et al. An experimental study of the influence of discontinuous structural planes at different locations on the shear fracture characteristics of rock mass[J]. Hydrogeology & Engineering Geology,2019,46(3):81 − 87. (in Chinese with English abstract)

    [9]

    宋洋, 任萌, 张维东, 等. 非贯通非共面凝灰岩节理岩体各向异性及其能量特征分析[J]. 中国地质灾害与防治学报,2019,30(1):126 − 132. [SONG Yang, REN Meng, ZHANG Weidong, et al. Analysis of anisotropy and energy characteristics of tuffs with non-penetrating joints[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):126 − 132. (in Chinese with English abstract)

    [10]

    郑文棠, 汪华安, 葛军辉. 基于地质强度指标法的柱状节理玄武岩体力学强度估计[J]. 地质力学学报,2009,15(4):330 − 335. [ZHENG Wentang, WANG Huaan, GE Junhui. Strength estimation of columnar jointed basaltic mass based on geological strength index[J]. Journal of Geomechanics,2009,15(4):330 − 335. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2009.04.002

    [11]

    张泽林, 王涛, 吴树仁, 等. 泥岩中软弱夹层的剪切力学特性研究[J]. 岩石力学与工程学报,2021,40(4):713 − 724. [ZHANG Zelin, WANG Tao, WU Shuren, et al. Study on shear mechanical properties of mudstone with weak intercalation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):713 − 724. (in Chinese with English abstract)

    [12]

    丁恩理, 刘越, 吴继敏, 等. 软硬互层状类岩石试样力学特性的三轴试验研究[J]. 地下空间与工程学报,2020,16(增刊 1):39 − 46. [DING Enli, LIU Yue, WU Jimin, et al. Triaxial test study on the mechanical properties of soft-hard interbedded rocklike specimens[J]. Chinese Journal of Underground Space and Engineering,2020,16(Sup 1):39 − 46. (in Chinese with English abstract)

    [13]

    汤友生, 姚海林, 廖阳, 等. 软弱夹层倾角对煤系砂岩物理力学特性的影响研究[J]. 矿业研究与开发,2018,38(8):51 − 55. [TANG Yousheng, YAO Hailin, LIAO Yang, et al. Study on the influences of weak interlayer inclination on physical mechanics properties of coal bearing sandstone[J]. Mining Research and Development,2018,38(8):51 − 55. (in Chinese with English abstract)

    [14]

    ZHANG H M, MENG X Z, YANG G S. A study on mechanical properties and damage model of rock subjected to freezing thawing cycles and confining pressure[J]. Cold Regions Science and Technology,2020,174:103056. doi: 10.1016/j.coldregions.2020.103056

    [15]

    沈世伟, 吴飞, 甘霖, 等. 不同初始饱和度红砂岩冻融后物理力学性质研究[J]. 钻探工程,2021,48(1):120 − 128. [SHEN Shiwei, WU Fei, GAN Lin, et al. Study on physical and mechanical properties of red sandstone with different initial saturation after freezing thawing[J]. Drilling Engineering,2021,48(1):120 − 128. (in Chinese with English abstract)

    [16]

    蒋钰峰, 吴光, 刘芳. 冻融循环条件下碳质千枚岩物理力学性质研究[J]. 水文地质工程地质,2018,45(6):114 − 121. [JIANG Yufeng, WU Guang, LIU Fang. Research on the physical and mechanic properties of carbonaceous phyllite subjected to freezing thawing cycles[J]. Hydrogeology & Engineering Geology,2018,45(6):114 − 121. (in Chinese with English abstract)

    [17]

    张君岳, 田镇, 刘桓兑, 等. 冻融红砂岩物理力学性质损伤演化试验研究[J]. 矿业研究与开发,2020,40(10):79 − 84. [ZHANG Junyue, TIAN Zhen, LIU Huandui, et al. Experimental research of physical and mechanical damage evolution of freezing thawing red sandstone[J]. Mining Research and Development,2020,40(10):79 − 84. (in Chinese with English abstract)

    [18]

    宋彦琦, 刘济琛, 邵志鑫, 等. 冻融循环条件下灰岩物理力学性能试验[J]. 科学技术与工程,2020,20(2):741 − 746. [SONG Yanqi, LIU Jichen, SHAO Zhixin, et al. Experimental study on physical and mechanical properties of limestone under freezing thawing cycles[J]. Science Technology and Engineering,2020,20(2):741 − 746. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.02.046

    [19]

    刘新喜, 李盛南, 徐泽沛, 等. 冻融循环作用下炭质页岩蠕变模型研究[J]. 中国公路学报,2019,32(11):137 − 145. [LIU Xinxi, LI Shengnan, XU Zepei, et al. Research on creep model of carbonaceous shale under freezing thawing cycle[J]. China Journal of Highway and Transport,2019,32(11):137 − 145. (in Chinese with English abstract)

    [20]

    工程岩体试验方法标准: GB/T 50266—2013[S].

    Standard for test methods of engineering rock mass: GB/T 50266—2013 [S]. (in Chinese)

  • 加载中

(4)

(3)

计量
  • 文章访问数:  1510
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2021-02-27
修回日期:  2021-04-20
刊出日期:  2021-09-15

目录