On mechanical properties and failure characteristics of surrounding rock of tunnel with weak interlayer under freezing-thawing cycles
-
摘要:
川藏铁路沿线隧道围岩中常存在大量软弱夹层,且岩体受严寒气候影响较大。为研究夹层倾角和冻融循环对隧道围岩力学性质的影响,室内制备了不同软弱夹层倾角、不同冻融循环次数条件下的互层岩体,并对含软弱夹层岩体展开了单轴压缩试验。研究发现:(1)含软弱夹层岩体的硬岩部分变形较小,而软岩夹层部分的破坏更加剧烈。夹层倾角较小时(β=0°、30°)岩体破坏后裂纹与夹层倾角接近平行,当夹层倾角较大时岩体破裂面与夹层呈X型交叉状;冻融循环次数越多,岩体的破坏程度越强烈。(2)随着夹层倾角的增大,岩体的单轴抗压强度和弹性模量先减小后增大;当夹层倾角β=45°时,抗压强度和弹性模量最小,抗压强度较含水平软弱夹层岩体降低35.27%,弹性模量降低34.84%。(3)冻融循环劣化了夹层岩体的力学性质,岩体承载能力随着冻融循环次数的增加而减弱,但塑性变形能力有所增强。在冻融循环作用的影响下,岩体抗压强度、弹性模量呈负指数型递减,峰值点应变则呈线性增大。
Abstract:There are a lot of weak intercalations in the surrounding rock of tunnels along Sichuan Tibet railway, and they are greatly affected by the cold climate. To understand the influence of dip angle of interlayer and freezing thawing cycles on the mechanical properties of tunnel surrounding rock, the interlayered rock mass with different dip angle of weak interlayer and different freezing thawing cycles was prepared in laboratory, and the uniaxial compression test of rock mass with weak interlayer was carried out. The results show that: (1) the deformation of hard rock part with weak interlayer is smaller, while the failure of soft rock interlayer is more severe. When the dip angle of the interlayer is small (β=0° and 30°), the fracture crack is nearly parallel to the dip angle of the interlayer after rock failure. When the dip angle of the interlayer is large, the fracture surface of the rock mass and the interlayer present an X-shaped intersection. The more freezing thawing cycles, the stronger the damage degree of rock mass (2) Uniaxial compressive strength and elastic modulus of rock mass decrease first and then increase with the increase of dip angle of interlayer, and the compressive strength and elastic modulus are the minimum when the dip angle of interlayer β=45°. Compared with the rock mass with horizontal weak interlayer, the compressive strength is reduced by 35.27%, and the elastic modulus is reduced by 34.84%. (3) Freezing thawingw cycles have a significant deterioration effect on the mechanical properties of rock mass. The bearing capacity of rock mass decreases with the increase of freezing thawing cycles, but the plastic deformation capacity increases. There is a negative exponential correlation between uniaxial compressive strength, elastic modulus and freezing thawing cycles, and a positive linear correlation between peak strain and freezing thawing cycles.
-
Key words:
- Sichuan-Tibet Railway /
- engineering geology /
- freezing thawing cycle /
- weak interlayer /
- mechanical test
-
表 1 含软弱夹层岩体物理参数
Table 1. Physical parameters of rock mass containing weak interlayer
分组 直径/mm 高度/mm 平均密度/(g·cm−3) 夹层厚度/mm 夹层倾角/(°) A 50.12 99.75 2.37 19.95 0 B 50.08 100.54 2.36 20.70 30 C 49.86 100.13 2.34 19.80 45 D 50.32 100.33 2.32 20.03 60 表 2 不同试验条件下岩体破坏形态特征
Table 2. Faliure characteristics of rock mass specimen under different testing conditions
试验条件 n=0 n=10 n=20 n=30 β=0° β=30° β=45° β=60° 表 3 不同条件下含软弱夹层岩体力学参数
Table 3. Mechanical parameters of rock mass with weak interlayer under different conditions
分组 倾角/(°) 循环次数 抗压强度/MPa 峰值点应变/% 弹性模量/GPa A 0 0 16.91 0.76 3.86 10 13.70 1.21 2.70 20 11.73 1.23 2.03 30 10.51 1.50 1.55 B 30 0 14.82 0.63 3.53 10 11.06 0.71 2.34 20 8.71 0.76 1.71 30 7.79 1.01 1.16 C 45 0 11.07 0.55 3.03 10 8.85 0.75 1.78 20 7.53 0.80 1.11 30 6.80 1.19 0.86 D 60 0 15.55 0.64 3.63 10 12.82 0.79 2.44 20 10.60 0.88 1.81 30 9.58 1.14 1.27 -
[1] 田四明, 巩江峰. 截至2019年底中国铁路隧道情况统计[J]. 隧道建设(中英文),2020,40(2):292 − 297. [TIAN Siming, GONG Jiangfeng. Statistics of railway tunnels in China as of the end of 2019[J]. Tunnel Construction,2020,40(2):292 − 297. (in Chinese)
[2] 郑宗溪, 孙其清. 川藏铁路隧道工程[J]. 隧道建设,2017,37(8):1049 − 1054. [ZHENG Zongxi, SUN Qiqing. Sichuan-Tibet Railway tunnel engineering[J]. Tunnel Construction,2017,37(8):1049 − 1054. (in Chinese)
[3] 宋章, 张广泽, 蒋良文, 等. 川藏铁路主要地质灾害特征及地质选线探析[J]. 铁道标准设计,2016,60(1):14 − 19. [SONG Zhang, ZHANG Guangze, JIANG Liangwen, et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet Railway[J]. Railway Standard Design,2016,60(1):14 − 19. (in Chinese with English abstract)
[4] 薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,2020,39(3):445 − 468. [XUE Yiguo, KONG Fanmeng, YANG Weimin, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):445 − 468. (in Chinese with English abstract)
[5] 郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质,2017,31(5):877 − 889. [GUO Changbao, ZHANG Yongshuang, JIANG Liangwen, et al. Discussion on the environmental and engineering geological problems along the Sichuan-Tibet Railway and its adjacent area[J]. Geoscience,2017,31(5):877 − 889. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.05.001
[6] ZUO J P, WANG Z F, ZHOU H W, et al. Failure behavior of a rock-coal-rock combined body with a weak coal interlayer[J]. International Journal of Mining Science and Technology,2013,23(6):907 − 912. doi: 10.1016/j.ijmst.2013.11.005
[7] HUANG F, ZHU H H, XU Q W, et al. The effect of weak interlayer on the failure pattern of rock mass around tunnel-Scaled model tests and numerical analysis[J]. Tunnelling and Underground Space Technology,2013,35:207 − 218. doi: 10.1016/j.tust.2012.06.014
[8] 郭朋瑜, 吉锋, 何双, 等. 节理分布位置对岩体剪切破裂特征影响试验研究[J]. 水文地质工程地质,2019,46(3):81 − 87. [GUO Pengyu, JI Feng, HE Shuang, et al. An experimental study of the influence of discontinuous structural planes at different locations on the shear fracture characteristics of rock mass[J]. Hydrogeology & Engineering Geology,2019,46(3):81 − 87. (in Chinese with English abstract)
[9] 宋洋, 任萌, 张维东, 等. 非贯通非共面凝灰岩节理岩体各向异性及其能量特征分析[J]. 中国地质灾害与防治学报,2019,30(1):126 − 132. [SONG Yang, REN Meng, ZHANG Weidong, et al. Analysis of anisotropy and energy characteristics of tuffs with non-penetrating joints[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):126 − 132. (in Chinese with English abstract)
[10] 郑文棠, 汪华安, 葛军辉. 基于地质强度指标法的柱状节理玄武岩体力学强度估计[J]. 地质力学学报,2009,15(4):330 − 335. [ZHENG Wentang, WANG Huaan, GE Junhui. Strength estimation of columnar jointed basaltic mass based on geological strength index[J]. Journal of Geomechanics,2009,15(4):330 − 335. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2009.04.002
[11] 张泽林, 王涛, 吴树仁, 等. 泥岩中软弱夹层的剪切力学特性研究[J]. 岩石力学与工程学报,2021,40(4):713 − 724. [ZHANG Zelin, WANG Tao, WU Shuren, et al. Study on shear mechanical properties of mudstone with weak intercalation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):713 − 724. (in Chinese with English abstract)
[12] 丁恩理, 刘越, 吴继敏, 等. 软硬互层状类岩石试样力学特性的三轴试验研究[J]. 地下空间与工程学报,2020,16(增刊 1):39 − 46. [DING Enli, LIU Yue, WU Jimin, et al. Triaxial test study on the mechanical properties of soft-hard interbedded rocklike specimens[J]. Chinese Journal of Underground Space and Engineering,2020,16(Sup 1):39 − 46. (in Chinese with English abstract)
[13] 汤友生, 姚海林, 廖阳, 等. 软弱夹层倾角对煤系砂岩物理力学特性的影响研究[J]. 矿业研究与开发,2018,38(8):51 − 55. [TANG Yousheng, YAO Hailin, LIAO Yang, et al. Study on the influences of weak interlayer inclination on physical mechanics properties of coal bearing sandstone[J]. Mining Research and Development,2018,38(8):51 − 55. (in Chinese with English abstract)
[14] ZHANG H M, MENG X Z, YANG G S. A study on mechanical properties and damage model of rock subjected to freezing thawing cycles and confining pressure[J]. Cold Regions Science and Technology,2020,174:103056. doi: 10.1016/j.coldregions.2020.103056
[15] 沈世伟, 吴飞, 甘霖, 等. 不同初始饱和度红砂岩冻融后物理力学性质研究[J]. 钻探工程,2021,48(1):120 − 128. [SHEN Shiwei, WU Fei, GAN Lin, et al. Study on physical and mechanical properties of red sandstone with different initial saturation after freezing thawing[J]. Drilling Engineering,2021,48(1):120 − 128. (in Chinese with English abstract)
[16] 蒋钰峰, 吴光, 刘芳. 冻融循环条件下碳质千枚岩物理力学性质研究[J]. 水文地质工程地质,2018,45(6):114 − 121. [JIANG Yufeng, WU Guang, LIU Fang. Research on the physical and mechanic properties of carbonaceous phyllite subjected to freezing thawing cycles[J]. Hydrogeology & Engineering Geology,2018,45(6):114 − 121. (in Chinese with English abstract)
[17] 张君岳, 田镇, 刘桓兑, 等. 冻融红砂岩物理力学性质损伤演化试验研究[J]. 矿业研究与开发,2020,40(10):79 − 84. [ZHANG Junyue, TIAN Zhen, LIU Huandui, et al. Experimental research of physical and mechanical damage evolution of freezing thawing red sandstone[J]. Mining Research and Development,2020,40(10):79 − 84. (in Chinese with English abstract)
[18] 宋彦琦, 刘济琛, 邵志鑫, 等. 冻融循环条件下灰岩物理力学性能试验[J]. 科学技术与工程,2020,20(2):741 − 746. [SONG Yanqi, LIU Jichen, SHAO Zhixin, et al. Experimental study on physical and mechanical properties of limestone under freezing thawing cycles[J]. Science Technology and Engineering,2020,20(2):741 − 746. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.02.046
[19] 刘新喜, 李盛南, 徐泽沛, 等. 冻融循环作用下炭质页岩蠕变模型研究[J]. 中国公路学报,2019,32(11):137 − 145. [LIU Xinxi, LI Shengnan, XU Zepei, et al. Research on creep model of carbonaceous shale under freezing thawing cycle[J]. China Journal of Highway and Transport,2019,32(11):137 − 145. (in Chinese with English abstract)
[20] 工程岩体试验方法标准: GB/T 50266—2013[S].
Standard for test methods of engineering rock mass: GB/T 50266—2013 [S]. (in Chinese)