A study of granite damage in the macro and microscopic scales under freezing-thawing cycles
-
摘要:
岩石的冻融破坏是高原地区工程建设中不可忽视的自然灾害之一。冻融作用下岩石矿物的不均匀收缩和孔隙水冰相变导致岩石内部孔隙扩展造成的岩石损伤,对工程稳定具有极大的威胁。为了研究冻融循环下花岗岩的损伤规律,以川藏铁路沿线理塘县毛娅坝盆地乱石包高位远程滑坡为研究对象,针对滑带上花岗岩,通过冻融循环试验模拟高原寒冷的气候环境变化,对冻融循环后的花岗岩进行单轴压缩、电阻率和电镜扫描(SEM)试验,从宏微观多尺度综合探讨冻融循环作用对花岗岩损伤劣化的规律。从试验研究中发现:(1)冻融循环过程中花岗岩质量变化呈先减小后增大再减小的趋势,这与冻融循环引起试样表面颗粒掉落和内部裂隙扩展双重作用有关;(2)随着冻融循环次数增大,花岗岩的单轴抗压强度、弹性模量和黏聚力皆呈非线性衰减趋势,而内摩擦角仅在平均值附近微小波动;(3)当冻融循环次数增加时,由宏微观试验所确定的冻融损伤因子和冻融荷载耦合作用下的总损伤因子都呈增长趋势,说明冻融次数对于花岗岩的抗压强度影响较大。研究结果可为高原地区工程建设中衡量花岗岩冻融强度特性提供参考依据。
Abstract:Freezing-thawing damage to rocks is one of the natural disasters that cannot be ignored in engineering construction in plateau regions. Under the action of freezing and thawing, uneven shrinkage of rock minerals and freezing of pore water lead to rock damage caused by pore expansion in rocks, which poses a great threat to engineering stability. In recent years, many researchers have conducted a lot of researches on rock properties under freezing-thawing conditions through theoretical and experimental methods. However, most of the previous studies focused mainly on sedimentary rocks such as sandstones, and very few studies were involved in freezing-thawing of granites in highland alpine regions. In this study, the granite on the landslide area was subjected to uniaxial compression, resistivity and electron microscope scanning (SEM) tests to discuss the damage of granite after multiple freezing-thawing cycles by simulating the cold climate changes on the plateau under freezing-thawing cycles. From the macro and micro multi-scale studies it can be found that: (1) the change of granite quality during freezing-thawing cycles tends to decrease, then increase and finally decrease, which is related to the dual effect of particle drop on the surface of the specimen and the expansion of internal fissures caused by freezing-thawing cycles. (2) As the freezing-thawing cycles increase, the uniaxial compressive strength, elastic modulus and cohesion of granite all show a non-linear decay, while the internal friction angle only fluctuates slightly around the mean value. (3) When the number of freezing-thawing cycles increases, both the freezing-thawing damage factor and the total damage factor under the coupling of freezing-thawing and load increase, which indicates that the number of freezing-thawing cycles has a greater influence on the strength of granite. The results of the study can provide a reference basis for measuring the freezing-thawing strength characteristics of granite in engineering construction in the plateau region.
-
Key words:
- freezing-thawing cycles /
- granite /
- SEM /
- resistivity /
- fractal dimension /
- damage factor /
- Sichuan-Tibet Railway
-
表 1 花岗岩的物理力学性质
Table 1. Basic physical properties of the granite specimen
岩性 干密度/
(g·m−3)饱和密度/
(g·m−3)孔隙率/% 吸水率/% 饱和吸水率/% 花岗岩 2.64 2.68 0.38 0.48 0.56 表 2 花岗岩质量测试结果
Table 2. Quality changes of marble specimen after freezing-thawing
样品编号 试样质量N/g 0 20 40 60 80 100 120 1 534.80 534.46 534.40 534.53 534.31 534.04 534.15 2 528.12 527.82 527.72 528.03 527.96 527.62 527.57 3 522.56 522.21 522.10 522.18 522.01 521.74 521.71 4 530.61 530.09 530.08 530.12 529.98 529.77 529.66 5 520.29 519.93 519.80 519.97 519.81 519.50 519.47 -
[1] 彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)
[2] 程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报,2007,25(1):72 − 84. [CHENG Qiangong, ZHANG Zhuoyuan, HUANG Runqiu. Study on dynamics of rock avalanches: state of the art report[J]. Journal of Mountain Science,2007,25(1):72 − 84. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2007.01.007
[3] 边江豪, 李秀珍, 徐瑞池, 等. 基于贡献率权重模型的川藏铁路沿线大型滑坡危险性区划[J]. 中国地质灾害与防治学报,2021,32(2):84 − 93. [BIAN Jianghao, LI Xiuzhen, XU Ruichi, et al. Hazard zonation of large-scale landslides along Sichuan-Tibet Railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):84 − 93. (in Chinese with English abstract)
[4] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Study on the characteristics and disaster mitigation of the giant landslide at BomiYigong Expressway in Tibet[J]. Hydrogeology & Engineering Geology,2000,27(4):8 − 11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2000.04.003
[5] 殷跃平. 西藏波密易贡高速巨型滑坡概况[J]. 中国地质灾害与防治学报,2000,11(2):103. [YIN Yueping. Overview of the giant landslide of the Yigong Expressway, Bomi, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2000,11(2):103. (in Chinese)
[6] 刘伟. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报,2002,13(3):9 − 18. [LIU Wei. Study on the characteristic of huge scale-super highspeed-long distance landslide chain in Yigong, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2002,13(3):9 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2002.03.002
[7] GUO C B, ZHANG Y S, DAVID & R, et al. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide, Tibetan Plateau, China[J]. Geomorphology,2016,259:145 − 154. doi: 10.1016/j.geomorph.2016.02.013
[8] 刘铮, 李滨, 贺凯, 等. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报,2020,26(4):471 − 480. [LIU Zheng, LI Bin, HE Kai, et al. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake[J]. Journal of Geomechanics,2020,26(4):471 − 480. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.2020.26.04.040
[9] 杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报,2018,37(3):545 − 563. [YANG Gengshe, SHEN Yanjun, JIA Hailiang, et al. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):545 − 563. (in Chinese with English abstract)
[10] 张慧梅, 杨更社. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报,2013,38(10):1756 − 1762. [ZHANG Huimei, YANG Gengshe. Experimental study of damage deterioration and mechanical properties for freezing-thawing rock[J]. Journal of China Coal Society,2013,38(10):1756 − 1762. (in Chinese with English abstract)
[11] 申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报,2016,38(10):1775 − 1782. [SHEN Yanjun, YANG Gengshe, RONG Tenglong, et al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering,2016,38(10):1775 − 1782. (in Chinese with English abstract) doi: 10.11779/CJGE201610005
[12] 吕文韬, 杨龙, 魏云杰, 等. 新疆塔县地区片麻岩冻融劣化机理与规律试验研究[J]. 水文地质工程地质,2019,46(3):95 − 100. [LYU Wentao, YANG Long, WEI Yunjie, et al. Research on mechanism of freezing-thawing deterioration of gneisses in the Taxian area of Xinjiang[J]. Hydrogeology & Engineering Geology,2019,46(3):95 − 100. (in Chinese with English abstract)
[13] 吴刚, 何国梁, 张磊, 等. 大理岩循环冻融试验研究[J]. 岩石力学与工程学报,2006,25(增刊 1):2930 − 2938. [WU Gang, HE Guoliang, ZHANG Lei, et al. Experimental study on cycles of freeze-thaw of marble[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup 1):2930 − 2938. (in Chinese with English abstract)
[14] NICHOLSON D T, NICHOLSON F H. Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering[J]. Earth Surface Processes and Landforms,2000,25(12):1295 − 1307. doi: 10.1002/1096-9837(200011)25:12<1295::AID-ESP138>3.0.CO;2-E
[15] 杨更社, 张长庆. 岩体损伤及检测[J]. 西安: 陕西科学技术出版社, 1998.
YANG Gengshe, ZHANG Changqing. Rock damage and detection [J]. Xi’an: Shaanxi Science and Technology Press, 1998. (in Chinese)
[16] 杨更社, 谢定义, 张长庆, 等. 岩石损伤扩展力学特性的CT 分析[J]. 岩石力学与工程学报,1999,18(3):250 − 254. [YANG Gengshe, XIE Dingyi, ZHANG Changqing, et al. CT analysis on mechanic characteristics of damage propagation of rock[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(3):250 − 254. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.1999.03.002
[17] 贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报,2016,35(5):879 − 895. [JIA Hailiang, XIANG Wei, TAN Long, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(5):879 − 895. (in Chinese with English abstract)
[18] 郭长宝, 杜宇本, 佟元清, 等. 青藏高原东缘理塘乱石包高速远程滑坡发育特征与形成机理[J]. 地质通报,2016,35(8):1332 − 1345. [GUO Changbao, DU Yuben, TONG Yuanqing, et al. Huge long-runout landslide characteristics and formation mechanism: A case study of the Luanshibao landslide, Litang County, Tibetan Plateau[J]. Geological Bulletin of China,2016,35(8):1332 − 1345. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2016.08.014
[19] 裴向军, 蒙明辉, 袁进科, 等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学,2017,38(7):1999 − 2006. [PEI Xiangjun, MENG Minghui, YUAN Jinke, et al. Freezing-thawing characteristics of fractured rockmass under dry and saturated conditions[J]. Rock and Soil Mechanics,2017,38(7):1999 − 2006. (in Chinese with English abstract)
[20] 田威, 韩女, 张鹏坤. 基于CT 技术的混凝土孔隙结构冻融损伤试验[J]. 中南大学学报(自然科学版),2017,48(11):3069 − 3075. [TIAN Wei,HAN Nü, ZHANG Pengkun. Experiments on the freeze-thaw damage of concrete porous structure based on CT technique[J]. Journal of Central South University(Science and Technology),2017,48(11):3069 − 3075. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2017.11.026