Engineering geology properties and creeping strength characteristics of the silty mudstone in Gongjue County in Tibet of China
-
摘要:
川藏铁路在穿越西藏贡觉地区时遇到三叠系粉砂质泥岩,在高地应力条件下容易发生大变形等危害。文章开展了不同围压下的岩石三轴压缩和和三轴蠕变试验,结合PFC数值模拟,研究了粉砂质泥岩在不同围压下的蠕变特性和长期强度研究,结果表明:贡觉粉砂质泥岩流变具有西原蠕变模型特征,蠕变与常规三轴试验条件下,随着围压不断增大,粉砂质泥岩试样均由拉-剪破坏向单剪破坏过渡,剪切破裂面与水平线的夹角逐渐减小,微裂纹数量减少;蠕变试验相较于常规三轴试验,由拉应力引起的压碎带影响范围更广;在高围压条件下,粉砂质泥岩更容易发生流变,随着围压的增大,轴向应变、侧向应变和体积应变均增大,微裂纹数量呈下降趋势;瞬时弹性模量及黏弹性系数与围压呈线性递增关系,黏弹性模量与围压呈对数型增长关系,黏塑性系数与围压呈指数型增长关系。在荷载长期作用下,岩石长期强度低于瞬时强度。
Abstract:The Triassic silty mudstone is encountered in the Sichuan-Tibet Railway, when it passes through Gongjue County in Tibet of Chian, and the rock is prone to cause large deformation under the condition of high geo-stress. In this study, we carried out the triaxial rock compression and triaxial creep tests under different confining pressures. Combined with the PFC numerical simulation, we have also studied the creeping characteristics and long-term strength of the silty mudstone under different confining pressures. The results show that the rheology of the Gongjue silty mudstone is characterized by the Nishihara creep model. With the continuous increase of the confining pressure, under the conditions of the creep and conventional triaxial tests, the silty mudstone specimens all undergo transition from tensile-shear failure to single-shear failure. The angle between the shear fracture surface and the horizontal line gradually decreases, and the number of microcracks decreases. Compared with the conventional triaxial test, the creep test has a wider range of influence on the crush zone caused by tensile stress. Under the conditions of high confining pressure, the silty mudstone is more prone to rheology. The numerical simulation results show that when the confining pressure increases, the axial strain, lateral strain and volumetric strain will increase, while the number of microcracks decrease. There is a linear increasing relationship between the instantaneous elastic modulus and the viscoelastic coefficient with the confining pressure, the viscoelastic modulus has a logarithmic growth relationship with the confining pressure, and the viscoplastic coefficient has an exponential growth relationship with the confining pressure. Under long-term loading, the long-term strength phase of the rock is lower than the instantaneous strength.
-
图 1 贡觉某隧道段地层岩性分布图(线路为示意图,据文献[1]修编)
Figure 1.
表 1 岩石力学实验加载方式
Table 1. Experimental loading method
试验类别 试样编号 围压/MPa 加载方式 常规三轴 GJ-1 5 先以1 MPa/min的速率施加围压,
待围压达到设定围压并稳定后,
轴向荷载以5 MPa/min速率
加载至试样产生破坏GJ-2 10 GJ-3 15 三轴蠕变 GJ-4 5 以1 MPa/min的速率施加围压,
待围压达到设定围压并稳定后
分级施加轴向荷载,轴向荷载
以5 MPa/min速率加载,每一
级应力恒定时间为24 hGJ-5 10 GJ-4 15 表 2 贡觉粉砂质泥岩室内试验基本力学参数
Table 2. Basic mechanical parameters of the laboratory tests
试样编号 密度/
(g·cm−3)围压
σ3/MPa轴向压力
σ1/MPa偏应力峰值
qf/MPa黏聚力
c/MPa内摩擦角
φ/(°)1 2.64 5 40.95 35.95 6.47 37.47 2 2.61 10 71.71 61.71 3 2.67 15 88.09 73.09 表 3 用于PFC数值模拟的粉砂质泥岩细观参数
Table 3. PFC microscopic parameters of silty mudstone
细观参数 参数类型 参数值 颗粒参数 颗粒模量/GPa 1.486 刚度比 1.4 摩擦系数 0.5 平行粘结参数 粘结模量/GPa 27.5 刚度比 1.4 抗拉强度/MPa 105 黏聚力/MPa 275 内摩擦角/(°) 42 表 4 长期强度参数
Table 4. Long-term strength parameter
围压
σ3/MPa长期流动极限
σs/MPaσs/σ0 黏聚力
c/ MPa内摩擦角
φ/(°)5 28.08 0.71 4.11 28.81 10 42.93 0.60 15 56.57 0.64 表 5 西原模型各流变参数
Table 5. Rheological parameters of the visco-elastoplastic creep model
σ3 /MPa σs /MPa E0/GPa E1/GPa η2/(GPa·h) η1/(GPa·h) 5 28.08 1.35 4.85 14.76 20.54 10 42.93 1.88 9.16 111.75 49.60 15 56.57 1.67 10.31 291.25 63.88 -
[1] 徐正宣, 张利国, 蒋良文, 等. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题[J]. 工程科学与技术,2021,53(3):29 − 42. [XU Zhengxuan, ZHANG Liguo, JIANG Liangwen, et al. Engineering Geological Environment and Main Engineering Geological Problems of Ya’an-Linzhi Section of the Sichuan-Tibet Railway[J]. Advanced Engineering Sciences,2021,53(3):29 − 42. (in Chinese with English abstract) doi: 10.15961/j.jsuese.202100224
[2] 郭长宝, 吴瑞安, 蒋良文, 等. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题[J]. 现代地质,2021,35(1):1 − 17. [GUO Changbao, WU Rui’an, JIANG Liangwen, et al. Typical geohazards and engineering geological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway, China[J]. Geoscience,2021,35(1):1 − 17. (in Chinese with English abstract)
[3] 张永双, 郭长宝, 李向全, 等. 川藏铁路廊道关键水工环地质问题: 现状与发展方向[J/OL]. 水文地质工程地质, 2021-06-17 [2021-07-27]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202104001
ZHANG Yongshuang, GUO Changbao, LI Xiangquan, et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: current status and development direction[J/OL]. Hydrogeology & Engineering Geology,2021-06-17[2021-07-27]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202104001. (in Chinese with English abstract)
[4] LU C F, CAI C X. Challenges and countermeasures for construction safety during the Sichuan-Tibet Railway project[J]. Engineering,2019,5(5):833 − 838. doi: 10.1016/j.eng.2019.06.007
[5] 王庆武, 巨能攀, 杜玲丽, 等. 深埋长大隧道岩爆预测与工程防治研究[J]. 水文地质工程地质,2016,43(6):88 − 94. [WANG Qingwu, JU Nengpan, DU Lingli, et al. Research on rockburst prediction and engineering measures of long and deep-lying tunnels[J]. Hydrogeology & Engineering Geology,2016,43(6):88 − 94. (in Chinese with English abstract)
[6] 陈仕阔, 李涵睿, 周航, 等. 基于岩爆危险性评价的川藏铁路某深埋硬岩隧道方案比选研究[J/OL]. 水文地质工程地质, 2021-06-22 [2021-07-27]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202103099
CHEN Shikuo, LI Hanrui, ZHOU Hang, et al. Route selection of deep lying and hard rock tunnel in Sichuan-Tibet Railway based on rockburst risk assessment[J/OL]. Hydrogeology & Engineering Geology, 2021-06-22[2021-07-27]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202103099 (in Chinese with English abstract)
[7] 吕擎峰, 韩文峰. 金川岩体各向异性与巷道支护变形破坏关系探讨[J]. 岩石力学与工程学报,2000,19(2):149 − 152. [LYU Qingfeng, HAN Wenfeng. Relationship between anisotropy of Jinchuan rockmass and deformation and failure of adit[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(2):149 − 152. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2000.02.005
[8] 王成虎, 高桂云, 杨树新, 等. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估[J]. 岩石力学与工程学报,2019,38(11):2242 − 2253. [WANG Chenghu, GAO Guiyun, YANG Shuxin, et al. Analysis and prediction of stress fields of Sichuan-Tibet Railway area based on contemporary tectonic stress field zoning in Western China[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(11):2242 − 2253. (in Chinese with English abstract)
[9] 刘新喜, 李盛南, 周炎明, 等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报,2020,39(1):138 − 146. [LIU Xinxi, LI Shengnan, ZHOU Yanming, et al. Study on creep behavior and long-term strength of argillaceous siltstone under high stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):138 − 146. (in Chinese with English abstract)
[10] 刘高, 张帆宇, 李新召, 等. 木寨岭隧道大变形特征及机理分析[J]. 岩石力学与工程学报,2005,24(增刊2):5521 − 5526. [LIU Gao, ZHANG Fanyu, LI Xinzhao, et al. Research on large deformation and its mechanism of muzhailing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(Sup2):5521 − 5526. (in Chinese with English abstract)
[11] 方星桦, 杨曾, 阳军生, 等. 高地应力隧道蚀变花岗岩地层围岩大变形特征及控制措施[J]. 中国铁道科学,2020,41(5):92 − 101. [FANG Xinghua, YANG Zeng, YANG Junsheng, et al. Large deformation characteristics and control measures of surrounding rock in altered granite stratum of high ground stress tunnel[J]. China Railway Science,2020,41(5):92 − 101. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2020.05.11
[12] 尹小涛, 葛修润, 李春光, 等. 加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报,2010,29(增刊1):2610 − 2615. [YIN Xiaotao, GE Xiurun, LI Chunguang, et al. Influences of loading rates on mechanical behaviors of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(Sup1):2610 − 2615. (in Chinese with English abstract)
[13] 张连英, 张树娟, 茅献彪, 等. 加载速率对煤系泥岩脆-延性转变影响的试验研究[J]. 采矿与安全工程学报,2018,35(2):391 − 396. [ZHANG Lianying, ZHANG Shujuan, MAO Xianbiao, et al. Experimental research of influence of loading rate on brittle-ductile transition of mudstone in coal rock strata[J]. Journal of Mining & Safety Engineering,2018,35(2):391 − 396. (in Chinese with English abstract)
[14] 陈镜丞. 湿热作用下粉砂质泥岩的渗流、力学特性及裂隙演化规律研究[D]. 长沙: 长沙理工大学, 2019
CHEN Jingcheng.Study on seepage, mechanical properties and fracture evolution of silty mudstone under hygrothermal action[D]. Changsha: Changsha University of Science & Technology, 2019. (in Chinese with English abstract)]
[15] 范庆忠, 李术才, 高延法. 软岩三轴蠕变特性的试验研究[J]. 岩石力学与工程学报,2007,26(7):1381 − 1385. [FAN Qingzhong, LI Shucai, GAO Yanfa. Experimental study on creep properties of soft rock under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1381 − 1385. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.07.010
[16] 徐慧宁, 庞希斌, 徐进, 等. 粉砂质泥岩的三轴蠕变试验研究[J]. 四川大学学报(工程科学版),2012,44(1):69 − 74. [XU Huining, PANG Xibin, XU Jin, et al. Study on triaxial creep test of silty mudstone[J]. Journal of Sichuan University (Engineering Science Edition),2012,44(1):69 − 74. (in Chinese with English abstract)
[17] 杨振伟, 金爱兵, 周喻, 等. 伯格斯模型参数调试与岩石蠕变特性颗粒流分析[J]. 岩土力学,2015,36(1):240 − 248. [YANG Zhenwei, JIN Aibing, ZHOU Yu, et al. Parametric analysis of Burgers model and creep properties of rock with particle flow code[J]. Rock and Soil Mechanics,2015,36(1):240 − 248. (in Chinese with English abstract)
[18] 徐平, 李云鹏, 丁秀丽, 等. FLAC3D粘弹性模型的二次开发及其应用[J]. 长江科学院院报,2004,21(2):10 − 13. [XU Ping, LI Yunpeng, DING Xiuli, et al. Secondary development and application of visco-elastic constitutive model in FLAC3D software[J]. Journal of Yangtze River Scientific Research Institute,2004,21(2):10 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5485.2004.02.004
[19] 丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报,2015,37(6):1031 − 1040. [CONG Yu, WANG Zaiquan, ZHENG Yingren, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering,2015,37(6):1031 − 1040. (in Chinese with English abstract) doi: 10.11779/CJGE201506009
[20] 王俊光, 杨鹏锦, 梁冰, 等. 基于颗粒流程序的不同加卸载条件下泥岩蠕变破裂规律研究[J]. 实验力学,2019,34(5):873 − 882. [WANG Junguang, YANG Pengjin, LIANG Bing, et al. Study on the creep fracture laws of mudstone under different loading and unloading conditions based on particle flow code[J]. Journal of Experimental Mechanics,2019,34(5):873 − 882. (in Chinese with English abstract) doi: 10.7520/1001-4888-18-214
[21] 孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报,2007,26(6):1081 − 1106. [SUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1081 − 1106. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.06.001
[22] MOTTA G E, PINTO C L L. New constitutive equation for salt rock creep[J]. Rem: Revista Escola De Minas,2014,67(4):397 − 403. doi: 10.1590/0370-44672014670165
[23] PING C, WEN Y D, WANG Y X, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock[J]. Environmental Earth Sciences,2016,75(10):1 − 8.
[24] HU K F, FENG Q, LI H, et al. Study on creep characteristics and constitutive model for thalam rock mass with fracture in tunnel[J]. Geotechnical and Geological Engineering,2018,36(2):827 − 834.
[25] YANG L, LI Z D. Nonlinear variation parameters creep model of rock and parametric inversion[J]. Geotechnical and Geological Engineering,2018,36(5):2985 − 2993. doi: 10.1007/s10706-018-0517-8
[26] ZHANG B W, HU H, YU W, et al. Timeliness of creep deformation in the whole visco-elasto-plastic process of surrounding rocks of the tunnel[J]. Geotechnical and Geological Engineering,2019,37(2):1007 − 1014. doi: 10.1007/s10706-018-0668-7