基于数字表面模型的岩体结构面产状获取

宣程强, 章杨松, 许文涛. 基于数字表面模型的岩体结构面产状获取[J]. 水文地质工程地质, 2022, 49(1): 75-83. doi: 10.16030/j.cnki.issn.1000-3665.202104029
引用本文: 宣程强, 章杨松, 许文涛. 基于数字表面模型的岩体结构面产状获取[J]. 水文地质工程地质, 2022, 49(1): 75-83. doi: 10.16030/j.cnki.issn.1000-3665.202104029
XUAN Chengqiang, ZHANG Yangsong, XU Wentao. Extraction of the discontinuity orientation from a digital surface model[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 75-83. doi: 10.16030/j.cnki.issn.1000-3665.202104029
Citation: XUAN Chengqiang, ZHANG Yangsong, XU Wentao. Extraction of the discontinuity orientation from a digital surface model[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 75-83. doi: 10.16030/j.cnki.issn.1000-3665.202104029

基于数字表面模型的岩体结构面产状获取

  • 基金项目: 国家高放废物地质处置重点研究开发项目(KEGONGERSI2020-194);国家自然科学基金项目(40872172)
详细信息
    作者简介: 宣程强(1996-),男,硕士研究生,研究方向为岩土工程。E-mail:xcq10554096@njust.edu.cn
    通讯作者: 章杨松(1962-),男,博士,教授,主要从事岩土工程和地质工程教学与科研工作。E-mail:zhangys@njust.edu.cn
  • 中图分类号: TU45

Extraction of the discontinuity orientation from a digital surface model

More Information
  • 针对传统现场接触式测量获取岩体结构面参数效率低、工作量大、结果精确性受人为因素影响等问题,本文结合数字摄影测量技术与运动法(structure from motion,SFM)进行岩体三维数字表面模型重建,并在此基础上建立了岩体结构面自动识别方法。岩体数字表面模型重建步骤主要为岩体影像资料采集,基于尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)算法进行图像特征匹配、稀疏点云构建、点云稠密化以及岩体曲面模型重构。结构面识别方法流程主要为:首先平滑岩体数字表面模型;通过改变搜索半径和角度阈值实现模型平面分割;基于区域生长原理进行结构面搜索;最后基于随机采样一致性拟合结构面得到结构面产状。将该方法应用于甘肃北山地下实验巷道,实现了巷道三维数字表面模型的重建与结构面产状数据获取,最后将识别到的结构面分组表征在模型表面。与人工实地测量方法以及现有的结构面识别软件相比,本文提出的方法具有良好的准确性,可为工程应用提供一定的参考。

  • 加载中
  • 图 1  SIFT特征点向量

    Figure 1. 

    图 2  巷道三维重建模型

    Figure 2. 

    图 3  结构面识别算法流程图

    Figure 3. 

    图 4  平滑岩体数字表面模型

    Figure 4. 

    图 5  结构面识别过程

    Figure 5. 

    图 6  RANSAC算法拟合结构面点云

    Figure 6. 

    图 7  法向量与产状关系

    Figure 7. 

    图 8  DSE分割结构面点云

    Figure 8. 

    图 9  北山坑探现场测量工作照片

    Figure 9. 

    图 10  巷道围岩结构面识别结果

    Figure 10. 

    图 11  结构面产状聚类分组极点图

    Figure 11. 

    图 12  巷道围岩结构面分组表征

    Figure 12. 

    表 1  三维模型检查点误差统计

    Table 1.  Error statistics of the 3D model checkpoints

    检查点编号误差/m
    XYZ
    32−0.002−0.0050.004
    35−0.003−0.0070.001
    38−0.001−0.0060.001
    41−0.005−0.0010.002
    440.001−0.004−0.001
    中误差/m0.0030.0050.002
    下载: 导出CSV

    表 2  结构面产状测量比较

    Table 2.  Comparison of the discontinuities orientation measurements

    结构面编号人工现场实测本文方法DSE软件提取
    倾向/(°)倾角/(°)倾向/(°)倾角/(°)倾向/(°)倾角/(°)
    118272180.67274.437179.43674.813
    217975185.53578.789184.78278.462
    332951331.46049.451332.07549.574
    417668177.67569.619178.63570.536
    517779174.99581.630173.82482.137
    617284174.87183.298173.58283.679
    下载: 导出CSV

    表 3  结构面产状分组结果

    Table 3.  Results of discontinuities orientation grouping

    组号倾向/(°)倾角/(°)样本数离散系数k
    1303.98478.418493.5803
    2157.43345.823382.2867
    320.73729.329338.1683
    下载: 导出CSV
  • [1]

    徐则双. 基于近景摄影测量获取结构面信息的岩体质量评价[D]. 长春: 吉林大学, 2019.

    XU Zeshuang. Quality evaluation of rock mass based on close-range photogrammetry to structural plane information[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract)

    [2]

    XU W T, ZHANG Y S, LI X Z, et al. Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: a case study of the Xinchang underground research laboratory site, China[J]. Engineering Geology,2020,269:105553. doi: 10.1016/j.enggeo.2020.105553

    [3]

    LATO M, DIEDERICHS M S, HUTCHINSON D J, et al. Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(1):194 − 199. doi: 10.1016/j.ijrmms.2008.04.007

    [4]

    GUO J T, LIU S J, ZHANG P N, et al. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds[J]. Computers & Geosciences,2017,103:164 − 172.

    [5]

    RIQUELME A J, ABELLÁN A, TOMÁS R. Discontinuity spacing analysis in rock masses using 3D point clouds[J]. Engineering Geology,2015,195:185 − 195. doi: 10.1016/j.enggeo.2015.06.009

    [6]

    黄海宁, 黄健, 周春宏, 等. 无人机影像在高陡边坡危岩体调查中的应用[J]. 水文地质工程地质,2019,46(6):149 − 155. [HUANG Haining, HUANG Jian, ZHOU Chunhong, et al. Application of UAV images to rockfall investigation at the high and steep slope[J]. Hydrogeology & Engineering Geology,2019,46(6):149 − 155. (in Chinese with English abstract)

    [7]

    胡瀚, 王凤艳, 王明常, 等. 数字摄影测量采集岩体结构面信息的控制测量方法[J]. 世界地质,2018,37(1):309 − 315. [HU Han, WANG Fengyan, WANG Mingchang, et al. Control survey for rock discontinuity information acquisition by digital photogrammetry[J]. Global Geology,2018,37(1):309 − 315. (in Chinese with English abstract)

    [8]

    嵇美伟, 章杨松, 李晓昭. 基于摄影测量技术的岩体结构面参数的获取[J]. 科学技术与工程,2019,19(24):344 − 351. [JI Meiwei, ZHANG Yangsong, LI Xiaozhao. Extraction of rock mass structural attitudes based on photogrammetry technology[J]. Science Technology and Engineering,2019,19(24):344 − 351. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2019.24.054

    [9]

    陈建琴, 李晓军, 朱合华. 基于点云的岩体间距与粗糙度的自动化提取[J]. 地下空间与工程学报,2017,13(1):133 − 140. [CHEN Jianqin, LI Xiaojun, ZHU Hehua. Automatic extract of rock mass spacing and roughness based on point clouds[J]. Chinese Journal of Underground Space and Engineering,2017,13(1):133 − 140. (in Chinese with English abstract)

    [10]

    SUN Shangqu, LI Liping, QIN Chengshuai, et al. Digitizing and modeling of structural planes in fractured rock mass tunnel based on SFM[J]. Arabian Journal of Geosciences,2019,12(11):1 − 13.

    [11]

    杨文治, 赵鹏. 基于三维激光点云数据的岩体结构面提取方法研究[J]. 勘察科学技术,2015(3):22 − 25. [YANG Wenzhi, ZHAO Peng. Research on extraction method of rock structural plane based on three-dimensional laser point cloud data[J]. Site Investigation Science and Technology,2015(3):22 − 25. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-3946.2015.03.007

    [12]

    CACCIARI P P, FUTAI M M. Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning[J]. Bulletin of Engineering Geology and the Environment,2016,75(1):223 − 237. doi: 10.1007/s10064-015-0748-3

    [13]

    RIQUELME A J, ABELLÁN A, TOMÁS R, et al. A new approach for semi-automatic rock mass joints recognition from 3D point clouds[J]. Computers & Geosciences,2014,68:38 − 52.

    [14]

    CHEN J Q, ZHU H H, LI X J. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud[J]. Computers & Geosciences,2016,95:18 − 31.

    [15]

    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91 − 110. doi: 10.1023/B:VISI.0000029664.99615.94

    [16]

    LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. September 20−27, 1999, Kerkyra, Greece. IEEE, 1999: 1150−1157.

    [17]

    韩超. 基于无人机航拍图像的三维重建SFM算法研究[D]. 呼和浩特: 内蒙古工业大学, 2019.

    HAN Chao. SFM algorithm of 3D reconstruction from UAV aerial images[D]. Hohhot: Inner Mongolia University of Tehchnology, 2019. (in Chinese with English abstract)

    [18]

    FURUKAWA Y, PONCE J. Carved visual hulls for image-based modeling[J]. International Journal of Computer Vision,2009,81(1):53 − 67. doi: 10.1007/s11263-008-0134-8

    [19]

    CIGNONI P, CALLIERI M, CORSINI M, et al. MeshLab: an open-source mesh processing tool[J]. Computing,2008,1:129 − 136.

    [20]

    UMILI G, FERRERO A, EINSTEIN H H. A new method for automatic discontinuity traces sampling on rock mass 3D model[J]. Computers & Geosciences,2013,51:182 − 192.

    [21]

    FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381 − 395. doi: 10.1145/358669.358692

    [22]

    WANG J, CHEN L, SU R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering,2018,10(3):411 − 435. doi: 10.1016/j.jrmge.2018.03.002

    [23]

    FISHER R. Dispersion on a sphere[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1953,217(1130):295 − 305. doi: 10.1098/rspa.1953.0064

  • 加载中

(12)

(3)

计量
  • 文章访问数:  1711
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2021-04-12
修回日期:  2021-07-05
刊出日期:  2022-01-15

目录