基于可靠度方法的全基质吸力段土-水特征模型研究

刘青灵, 简文彬, 许旭堂, 聂闻. 基于可靠度方法的全基质吸力段土-水特征模型研究[J]. 水文地质工程地质, 2022, 49(1): 92-100. doi: 10.16030/j.cnki.issn.1000-3665.202104033
引用本文: 刘青灵, 简文彬, 许旭堂, 聂闻. 基于可靠度方法的全基质吸力段土-水特征模型研究[J]. 水文地质工程地质, 2022, 49(1): 92-100. doi: 10.16030/j.cnki.issn.1000-3665.202104033
LIU Qingling, JIAN Wenbin, XU Xutang, NIE Wen. A study of the soil-water reliability model in the whole matric suction range[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 92-100. doi: 10.16030/j.cnki.issn.1000-3665.202104033
Citation: LIU Qingling, JIAN Wenbin, XU Xutang, NIE Wen. A study of the soil-water reliability model in the whole matric suction range[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 92-100. doi: 10.16030/j.cnki.issn.1000-3665.202104033

基于可靠度方法的全基质吸力段土-水特征模型研究

  • 基金项目: 国家自然科学基金项目(41861134011;U2005205);福建省中青年教师科研项目(JAT190001)
详细信息
    作者简介: 刘青灵(1988-),男,博士研究生,主要从事岩土与工程地质方面的科研工作。E-mail:957653977@qq.com
    通讯作者: 简文彬(1963-),男,博士,教授,博士生导师,主要从事岩土工程、地质工程方面的科研与教学工作。E-mail:jwb@fzu.edu.cn
  • 中图分类号: P642.11+6

A study of the soil-water reliability model in the whole matric suction range

More Information
  • 土-水特征曲线是非饱和土入渗和流-固耦合分析的基础,目前该模型的研究成果由于试验方法和设备的局限,仅能够得到局部基质吸力段(低吸力或高吸力)的土-水特征曲线;而如何根据局部试验数据集推断与试验结果相吻合的全基质吸力段范围的土-水特征曲线是一个难题。对东南沿海广泛分布的原状残积土进行了不同基质吸力段的土-水特征试验。根据残积土低吸力段和高吸力段的试验数据,运用可靠度分析方法,从土壤孔隙微元破裂失稳的角度,建立了土壤全基质吸力段的土-水特征模型。根据UNSODA2.0数据库提取砂土、粉土、黏土等3种类型土样本(52个)的试验数据,讨论了模型参数意义和不同土类的模型适用性,进行了不同土-水特征模型的比较分析。对比验证研究表明,形状参数σ和中值比例参数$ \mu $使提出的模型具有很强的适应性,并且具有依据局部试验数据(低或高基质吸力段)快速获得全基质吸力段土壤土-水特征曲线的能力。与其它模型相比,模型计算过程适应性强,模型决定系数R2>0.98。研究结果对快速获取不同类型土壤的全基质吸力段土-水特征曲线具有参考价值。

  • 加载中
  • 图 1  Geo-experts压力板仪装置

    Figure 1. 

    图 2  基于不同来源试验数据推断土-水特征曲线图

    Figure 2. 

    图 3  模型参数与SWCC曲线的关系

    Figure 3. 

    图 4  UNSODA土壤选择样本类别分布图

    Figure 4. 

    图 5  不同类型土壤的土-水特征曲线

    Figure 5. 

    图 6  局部数据推断条件下模型与决定系数关系

    Figure 6. 

    表 1  残积土的物理性质

    Table 1.  Physical properties of the residual clay profiles

    性质均值
    密度/(g·cm−3)1.48
    初始含水率w/ %15
    重度G/ (kN·m−3)14.5
    孔隙率e0.79
    塑限/%30.3
    液限/%41.4
    有机质含量/%0.5
    级配系数CU8.75
    曲率系数CC1.21
    有效粒径D10/ mm0.008
    平均粒径D50/ mm0.050
    下载: 导出CSV

    表 2  基质吸力空间的不同概率描述

    Table 2.  Different probability distribution models for the test data

    编号概率分布低基质吸力段组高基质吸力段组全基质吸力段
    MLE aMLE bR2(1)MLE aMLEbR2(2)MLE aMLE bR2(3)
    1伽马分布0.382234.090.95620.1333749.730.76280.287206.140.9284
    2广义极值分布548.59362.220.97536123.4528758.520.60141103.94906.400.957
    3对数正态分布5.612.770.98045.643.050.97215.682.930.9776
    4瑞利分布315.38/0.9104894.77/0.8290318.16/0.9148
    5韦伯分布627.390.470.96451834.353.480.4666948.580.370.9464
    6指数分布385.42/0.83551330.13/0.6928470.04/0.8288
    7正态分布384.85428.290.97822043.832777.750.5672643.19886.780.9652
    下载: 导出CSV

    表 3  UNSODA不同土壤特征试验数据

    Table 3.  Basic information of the selected soil data from UNSODA

    类型样本数UNSODA 编码数值密度/ (g·cm−3)粒径试验组数土-水试验组数
    砂土311140 1141 1142 1465
    1466 1467 2221 2310 3132 3141 3142 3143
    3144 3153 3154 3155 3162 3163 3164 3165
    3172 3173 3174 3181 3206 4440 4441 4444
    4520 4521 4522
    均值1.58815
    最大值1.811642
    最小值1.43610
    粉砂土92404 2405 2760 2761
    3260 3261 4071 4570
    4671
    均值1.38513
    最大值1.56925
    最小值1.1337
    黏性土121400 2361 2362 2620
    2621 2660 3281 3282 4120 4121 4680 4681
    均值1.25613
    最大值1.61925
    最小值1.0337
    下载: 导出CSV

    表 4  土-水特征曲线模型

    Table 4.  Different models for the soil characteristic curve

    模型公式
    Gardner (1956)
    Brooks and Corey (1964)
    Fredlund and Xing (1994)
    Van Genuchten (1980)
    Kosugi (1994)
    McKee and Bumb (1987)
    (Boltzman )
      注:S是饱和度,是基质吸力值,是模型参数。
    下载: 导出CSV
  • [1]

    FREDLUND D, HOUSTON S. Interpretation of soil-water characteristic curves when volume change occurs as soil suction is changed[C]// Advances in Unsaturated Soils - Proceedings of the 1st Pan-American Conference on Unsaturated Soils, PanAmUNSAT 2013. Colombia: CRC Press, 2013: 15 − 31.

    [2]

    FREDLUND D G, XING A Q, HUANG S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(4):533 − 546. doi: 10.1139/t94-062

    [3]

    FREDLUND D G, RAHARDJO H, FREDLUND M D. Unsaturated soil mechanics in engineering practice[J]. Unsaturated Soil Mechanics in Engineering Practice,2012,132(3):286 − 321.

    [4]

    HAN Z, VANAPALLI S K, ZOU W L. Integrated approaches for predicting soil-water characteristic curve and resilient modulus of compacted fine-grained subgrade soils[J]. Canadian Geotechnical Journal,2017,54(5):646 − 663. doi: 10.1139/cgj-2016-0349

    [5]

    KOSUGI K, HOPMANS J W. Scaling water retention curves for soils with lognormal pore-size distribution[J]. Soil Science Society of America Journal,1998,62(6):1496 − 1505. doi: 10.2136/sssaj1998.03615995006200060004x

    [6]

    MERAT S, DJERBAL L, BAHAR R. Numerical analysis of climate effect on slope stability[C]//Second Pan-American Conference on Unsaturated Soils. November 12-15, 2017, Dallas, Texas. Reston: American Society of Civil Engineers, 2017: 308 − 318.

    [7]

    徐全, 谭晓慧, 辛志宇, 等. 土水特征曲线的概率分析[J]. 水文地质工程地质,2015,42(3):79 − 85. [XU Quan, TAN Xiaohui, XIN Zhiyu, et al. Probabilistic analysis of the soil-water characteristic curve[J]. Hydrogeology & Engineering Geology,2015,42(3):79 − 85. (in Chinese with English abstract)

    [8]

    BORDONI M, BITTELLI M, VALENTINO R, et al. Improving the estimation of complete field soil water characteristic curves through field monitoring data[J]. Journal of Hydrology,2017,552:283 − 305. doi: 10.1016/j.jhydrol.2017.07.004

    [9]

    JOHARI A, HABIBAGAHI G, GHAHRAMANI A. Prediction of SWCC using artificial intelligent systems: a comparative study[J]. Scientia Iranica,2011,18(5):1002 − 1008. doi: 10.1016/j.scient.2011.09.002

    [10]

    GARDNER W R, HILLEL D, BENYAMINI Y. Post-irrigation movement of soil water: 1. redistribution[J]. Water Resources Research,1970,6(3):851 − 861. doi: 10.1029/WR006i003p00851

    [11]

    BROOKS R, COREY A. Hydraulic properties of porous media[J]. Hydrology Papers,1964,3(3):37.

    [12]

    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513 − 522. doi: 10.1029/WR012i003p00513

    [13]

    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(4):521 − 532. doi: 10.1139/t94-061

    [14]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892 − 898. doi: 10.2136/sssaj1980.03615995004400050002x

    [15]

    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique,2003,53(1):105 − 112.

    [16]

    CIERVO F, CASINI F, PAPA M N, et al. Some remarks on bimodality effects of the hydraulic properties on shear strength of unsaturated soils[J]. Vadose Zone Journal,2015,14(9):1 − 12. doi: 10.2136/vzj2014.09.0126

    [17]

    GHORBANI J, AIREY D W, EL-ZEIN A. Numerical framework for considering the dependency of SWCCs on volume changes and their hysteretic responses in modelling elasto-plastic response of unsaturated soils[J]. Computer Methods in Applied Mechanics and Engineering,2018,336:80 − 110. doi: 10.1016/j.cma.2018.03.008

    [18]

    潘登丽, 倪万魁, 苑康泽, 等. 基于VG模型确定土水特征曲线基本参数[J]. 工程地质学报,2020,28(1):69 − 76. [PAN Dengli, NI Wankui, YUAN Kangze, et al. Determination of soil-water characteristic curve variables based on vg model[J]. Journal of Engineering Geology,2020,28(1):69 − 76. (in Chinese with English abstract)

    [19]

    陈东霞, 龚晓南. 非饱和残积土的土-水特征曲线试验及模拟[J]. 岩土力学,2014,35(7):1885 − 1891. [CHEN Dongxia, GONG Xiaonan. Experiment and modeling of soil-water characteristic curve of unsaturated residual soil[J]. Rock and Soil Mechanics,2014,35(7):1885 − 1891. (in Chinese with English abstract)

    [20]

    伊盼盼, 牛圣宽, 韦昌富. 干密度和初始含水率对非饱和重塑粉土土水特征曲线的影响[J]. 水文地质工程地质,2012,39(1):42 − 46. [YI Panpan, NIU Shengkuan, WEI Changfu. Effect of dry density and initial moisture content on soil water characteristic curve of remolded unsaturated silt[J]. Hydrogeology & Engineering Geology,2012,39(1):42 − 46. (in Chinese with English abstract)

    [21]

    张爱军, 王毓国, 邢义川, 等. 伊犁黄土总吸力和基质吸力土水特征曲线拟合模型[J]. 岩土工程学报,2019,41(6):1040 − 1049. [ZHANG Aijun, WANG Yuguo, XING Yichuan, et al. Fitting models for soil-water characteristic curve of total and matrix suctions of Yili loess[J]. Chinese Journal of Geotechnical Engineering,2019,41(6):1040 − 1049. (in Chinese with English abstract)

    [22]

    ALDAOOD A, BOUASKER M, AL-MUKHTAR M. Soil-water characteristic curve of lime treated gypseous soil[J]. Applied Clay Science,2014,102:128 − 138. doi: 10.1016/j.clay.2014.09.024

    [23]

    尹振华, 张建明, 张虎, 等. 融化压缩下水泥改良冻土的微观孔隙特征演变[J]. 水文地质工程地质,2021,48(2):97 − 105. [YIN Zhenhua, ZHANG Jianming, ZHANG Hu, et al. Microcosmic pore characteristics evolution of the cement improved frozen soil after thawing compression[J]. Hydrogeology & Engineering Geology,2021,48(2):97 − 105. (in Chinese with English abstract)

    [24]

    胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报,2013,35(8):1451 − 1462. [HU Ran, CHEN Yifeng, ZHOU Chuangbing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering,2013,35(8):1451 − 1462. (in Chinese with English abstract)

    [25]

    李同录, 张辉, 李萍, 等. 不同沉积环境下马兰黄土孔隙分布与土水特征的模式分析[J]. 水文地质工程地质,2020,47(3):107 − 114. [LI Tonglu, ZHANG Hui, LI Ping, et al. Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments[J]. Hydrogeology & Engineering Geology,2020,47(3):107 − 114. (in Chinese with English abstract)

    [26]

    DAVID SUITS L, SHEAHAN T C, LEONG E C, et al. Factors affecting the filter paper method for total and matric suction measurements[J]. Geotechnical Testing Journal,2002,25(3):8198. doi: 10.1520/GTJ11094J

    [27]

    LEONG E C. Soil-water characteristic curves - Determination, estimation and application[J]. Japanese Geotechnical Society Special Publication,2019,7(2):21 − 30. doi: 10.3208/jgssp.v07.003

    [28]

    KOYLUOGLU U. Soil mechanics for unsaturated soils[J]. Soil Dynamics and Earthquake Engineering,1993,12(7):449 − 450.

    [29]

    GAO Y, SUN D A, ZHOU A N, et al. Predicting shear strength of unsaturated soils over wide suction range[J]. International Journal of Geomechanics,2020,20(2):04019175. doi: 10.1061/(ASCE)GM.1943-5622.0001555

    [30]

    KRISTO C, RAHARDJO H, SATYANAGA A. Effect of variations in rainfall intensity on slope stability in Singapore[J]. International Soil and Water Conservation Research,2017,5(4):258 − 264. doi: 10.1016/j.iswcr.2017.07.001

    [31]

    MYERS D E. Reliability and statistics in geotechnical engineering[J]. Technometrics,2005,47(1):103 − 104. doi: 10.1198/tech.2005.s838

    [32]

    PHOON K K. Reliability-based design in geotechnical engineering: Computations and applications[M]. Boca Raton: CRC Press, 2008.

    [33]

    XIAO Z P, LÜ Q, ZHENG J, et al. Conditional probability-based system reliability analysis for geotechnical problems[J]. Computers and Geotechnics, 2020, 126: 103751.

    [34]

    WANG Q, FANG H B. An adaptive high-dimensional model representation method for reliability analysis of geotechnical engineering problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(12): 1705 − 1723.

    [35]

    NEMES A, SCHAAP M G, LEIJ F J, et al. Description of the unsaturated soil hydraulic database UNSODA version 2.0[J]. Journal of Hydrology, 2001, 251(3/4): 151−162.

  • 加载中

(6)

(4)

计量
  • 文章访问数:  1779
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2021-02-02
修回日期:  2021-04-15
刊出日期:  2022-01-15

目录