胶东典型花岗岩热储地下热水水化学特征及热储研究

王晓翠, 孙海龙, 袁星芳. 胶东典型花岗岩热储地下热水水化学特征及热储研究[J]. 水文地质工程地质, 2022, 49(5): 186-194. doi: 10.16030/j.cnki.issn.1000-3665.202106049
引用本文: 王晓翠, 孙海龙, 袁星芳. 胶东典型花岗岩热储地下热水水化学特征及热储研究[J]. 水文地质工程地质, 2022, 49(5): 186-194. doi: 10.16030/j.cnki.issn.1000-3665.202106049
WANG Xiaocui, SUN Hailong, YUAN Xingfang. A study of the hydrochemical characteristics and geothermal water of typical granite geothermal reservoir in the Jiaodong area[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 186-194. doi: 10.16030/j.cnki.issn.1000-3665.202106049
Citation: WANG Xiaocui, SUN Hailong, YUAN Xingfang. A study of the hydrochemical characteristics and geothermal water of typical granite geothermal reservoir in the Jiaodong area[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 186-194. doi: 10.16030/j.cnki.issn.1000-3665.202106049

胶东典型花岗岩热储地下热水水化学特征及热储研究

  • 基金项目: 环境地球化学国家重点实验室开放课题(SKLEG2021215);山东省自然科学基金项目(ZR2021QD065);山东省第六地质矿产勘查院基金项目(KY2019012)
详细信息
    作者简介: 王晓翠(1988-),女,博士,讲师,主要从事水文地质、地下热水成因研究工作。E-mail:stu_wxcui@126.com
  • 中图分类号: P314

A study of the hydrochemical characteristics and geothermal water of typical granite geothermal reservoir in the Jiaodong area

  • 招远地热田位于胶东隆起区,元古代蚀变花岗岩分布广泛,地下热水微量元素丰富。为查明地下热水微量组分的赋存条件、花岗岩热储环境与地热资源量,利用地下热水水化学分析、热储分析及有效能源换算法,建立Gibbs模型,进行PHREEQC模拟并开展热储估算。研究结果显示:(1)地下热水水化学类型为Cl—Na型,与海水水化学类型一致,地下热水溶解性固体总量(TDS)介于1359.7~5302.0 mg/L,锶、溴、偏硅酸等微量组分的质量浓度分别达26.20,7.50,88.00 mg/L,均超过国家医疗热矿水水质标准;(2)地热田东北方向的玲珑花岗岩中锶的质量分数较高,介于334~1 805 mg/kg,是地下热水中锶的一个重要来源;(3)热储温度在107~215 °C之间,硅-焓图解法分析冷水混入比例为33.6%~58.9%。结果显示:40~60 °C的总可用能源19.73 TJ/a,总热能达5479.57 MW·h,吨油当量471.16 toe;>60 °C的总可用能源301.57 TJ/a,总热能达83771.53 MW·h,吨油当量为7203.06 toe。综合分析认为研究区地热资源丰富,地下热水微量组分来源于花岗岩热储层的溶滤作用,富集过程受热储环境的影响,研究结果有助于完善地下热水水-岩相互作用理论。

  • 加载中
  • 图 1  招远地区地质地貌及取样点简图

    Figure 1. 

    图 2  招远地区地下冷水与地下热水Piper图

    Figure 2. 

    图 3  招远地区地下热水Gibbs图

    Figure 3. 

    图 4  招远地区地下热水SiO2温标分布图[5-8, 22-27]

    Figure 4. 

    图 5  招远地区地下热水ρ (SiO2)-焓值模型

    Figure 5. 

    图 6  招远地区地下热水硅-焓方程模型

    Figure 6. 

    图 7  Z14地下热水点矿物SI-温度图

    Figure 7. 

    表 1  研究区地下热水组分质量浓度、TDS、碱度及计算获得的$P_{\rm{CO_2}} $

    Table 1.  Mass concentration of constituents, TDS, alkalinity and calculated $P_{\rm{CO_2}} $ of 15 samples

    水样ρ()
    /(mg·L−1
    ρ
    /(mg·L−1
    ρ()
    /(mg·L−1
    ρ()
    /(mg·L−1

    /(mg·L−1

    /(mg·L−1
    ρ(SiO2)
    /(mg·L−1
    TDS
    /(mg·L−1
    碱度
    /(mg·kg−1 CaCO3
    电荷平衡
    /%

    /Pa
    S111100.01150.0353.019400.02280.0104.00.634800.0109.01.0669
    Z11575.810.1240.92664.899.6252.24717.3200.30.159300
    Z21618.15.1231.42731.8123.4149.460.04853.9128.10.03730
    Z31748.712.5251.62990.1125.7146.388.05302.0113.40.111400
    Z41731.41.8253.12922.1116.4186.780.05206.9156.50.011300
    Z51343.19.3224.82236.3119.8281.855.04136.4200.50.463800
    Z6455.33.955.2587.752.8308.746.01359.7253.10.03580
    Z71449.635.7270.92596.080.4275.828.84603.2223.20.05560
    Z8968.263.1189.91765.393.4291.915.03256.6248.20.021400
    Z91647.511.4238.42788.2112.1202.060.04970.1167.30.02630
    Z101766.516.6251.12961.1122.2266.824.05286.3222.00.01750
    Z11773.68.474.91144.176.2242.048.02253.4204.00.14270
    Z121398.726.3218.92360.694.0316.115.04277.8268.40.031900
    Z13100.656.298.91155.9494.6313.02172.6252.74.801800
    Z141188.04.2162.11924.7346.8224.185.74027.5181.91.801200
    下载: 导出CSV

    表 2  Z14热水点矿物的SI

    Table 2.  SI of minerals of sample Z14

    矿物名称SI矿物名称SI矿物名称SI
    钠长石−1.52温石棉−1.86羟基磷灰石1.28
    硬石膏−0.83CO2(g)−1.55伊利石−2.22
    钙长石−2.88白云石0.03钾长石−0.96
    文石0.54毒重石−2.81云母2.87
    重晶石0.40Fe(OH)3(a)−0.16高岭石−0.47
    钙蒙脱石−2.05萤石−0.01石英0.33
    方解石0.65水铝矿−1.07菱锰矿−0.11
    天青石0.00石膏−1.09锶长石0.12
    玉髓0.04石盐−4.38滑石2.52
    绿泥石−0.26锰矿−1.35
    下载: 导出CSV

    表 3  硅-焓法计算获得的参数

    Table 3.  Parameters calculated with the silicon enthalpy method

    热水温度/℃考虑蒸汽损失
    的热储温度/℃
    不考虑蒸汽损
    失热储温度/℃
    蒸汽损
    失量/%
    冷水
    比例/%
    热储
    温度/℃
    Z288107.23126.0018.533.6125.73
    Z387119.11171.3328.553.9172.65
    Z479119.87170.1229.658.9172.25
    Z581106.40123.9615.239.3125.33
    Z634134.17217.1135.590.2215.71
    Z726119.49170.5728.192.2167.42
    Z960117.45164.4427.770.0167.90
    Z103592.1074.497.08
    Z1144121.91180.3432.681.6176.60
    Z1482121.54173.8329.758.6176.11
    下载: 导出CSV

    表 4  地下热水点基本参数及地热能指标

    Table 4.  Parameters of the geothermal water and geothermal energy indexes

    水样点井深/m水头/mFavg~Fmax/(kg·s–1Ti/℃To/℃C/MWtE/(TJ·a–1
    Z1347.065.93.9~5.164200.9426.16
    Z2218.13.9~8.988202.5257.21
    Z3252.59.7~30.092831.1323.58
    Z4400.061.217.2~26.379750.4411.47
    Z5400.066.33.7~4.9100810.4011.03
    Z6280.065.96.7~13.246340.6715.78
    Z7200.059.30.8~0.832260.020.62
    Z8223.766.20.5~0.523200.010.18
    Z9280.462.41.8~3.760540.092.18
    Z10226.661.41.2~1.335330.010.34
    Z11360.062.80.8~1.544320.071.77
    Z12270.159.91.1~1.222180.020.60
    Z1381.839.82.8~2.899200.9229.07
    Z14248.063.120.8~20.882304.54143.05
    下载: 导出CSV

    表 5  招远温泉不同温度范围地热能潜力

    Table 5.  Geothermal potential of the hot springs in various temperature ranges in the Zhaoyuan area

    温度/℃C/MWtE/(TJ·a–1A热能换算电能/(MW·h)吨油当量/toe
    <400.061.740.98482.0241.45
    40~600.8319.730.755479.57471.16
    >6010.89301.570.8883771.537203.06
    下载: 导出CSV
  • [1]

    沈照理, 王焰新, 郭华明. 水-岩相互作用研究的机遇与挑战[J]. 地球科学,2012,37(2):207 − 219. [SHEN Zhaoli, WANG Yanxin, GUO Huaming. Opportunities and challenges of water-rock interaction studies[J]. Earth Science,2012,37(2):207 − 219. (in Chinese with English abstract)

    [2]

    周训, 金晓媚, 梁四海, 等. 地下水科学专论[M]. 2版. 北京: 地质出版社, 2010

    ZHOU Xun, JIN Xiaomei, LIANG Sihai, et al. Monographs on groundwater science[M]. 2nd ed. Beijing: Geological Publishing House, 2010. (in Chinese)

    [3]

    文冬光, 沈照理, 钟佐燊. 水-岩相互作用的地球化学模拟理论及应用[M]. 武汉: 中国地质大学出版社, 1998

    WEN Dongguang, SHEN Zhaoli, ZHONG Zuoyan. Geochemical simulation theory and application of water-rock interaction[M]. Wuhan: China University of Geosciences Press, 1998. (in Chinese)

    [4]

    王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报,2020,94(7):1923 − 1937. [WANG Guiling, LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica,2020,94(7):1923 − 1937. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.07.002

    [5]

    FOURNIER R O, POTTER II R W. Magnesium correction for the Na-K-Ca chemical geothermometer[J]. Geochimica et Cosmochimica Acta, 1979, 43(9), 1543 − 1550.

    [6]

    GIGGENBACH W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. doi: 10.1016/0016-7037(88)90143-3

    [7]

    FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics,1977,5(1/2/3/4):41 − 50. doi: 10.1016/0375-6505(77)90007-4

    [8]

    FOURNIER R O, ROWE J J. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells[J]. American Journal of Science,1966,264(9):685 − 697. doi: 10.2475/ajs.264.9.685

    [9]

    LIU Z H, DREYBRODT W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin,2015,60(2):182 − 191. doi: 10.1007/s11434-014-0682-y

    [10]

    高宗军, 孙智杰, 杨永红, 等. 山东省地热水水化学研究及赋存特征[J]. 科学技术与工程,2019,19(20):85 − 90. [GAO Zongjun, SUN Zhijie, YANG Yonghong, et al. Occurrence characteristics and hydrochemical characteristics of geothermal water in Shandong Province[J]. Science Technology and Engineering,2019,19(20):85 − 90. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2019.20.012

    [11]

    HAO Y L, PANG Z H, KONG Y L, et al. Chemical and isotopic constraints on the origin of saline waters from a hot spring in the eastern coastal area of China[J]. Hydrogeology Journal,2020,28(7):2457 − 2475. doi: 10.1007/s10040-020-02199-7

    [12]

    孟庆晗, 王鑫, 邢立亭, 等. 济南四大泉群补给来源差异性研究[J]. 水文地质工程地质,2020,47(1):37 − 45. [MENG Qinghan, WANG Xin, XING Liting, et al. A study of the difference in supply sources of the four groups of springs in Jinan[J]. Hydrogeology & Engineering Geology,2020,47(1):37 − 45. (in Chinese with English abstract)

    [13]

    梁永平, 张发旺, 申豪勇, 等. 山西太原晋祠—兰村泉水复流的岩溶水文地质条件新认识[J]. 水文地质工程地质,2019,46(1):11 − 18. [LIANG Yongping, ZHANG Fawang, SHEN Haoyong, et al. Recognition of the critical hydrogeological conditions of the Jinci Spring and Lancun Spring in Shanxi[J]. Hydrogeology & Engineering Geology,2019,46(1):11 − 18. (in Chinese with English abstract)

    [14]

    闫佰忠, 邱淑伟, 肖长来, 等. 长白山玄武岩区主要断裂与地热水异常关系[J]. 水文地质工程地质,2017,44(4):34 − 40. [YAN Baizhong, QIU Shuwei, XIAO Changlai, et al. Relationship between the main faults and geothermal water anomaly in the Changbai Mountain basalt area[J]. Hydrogeology & Engineering Geology,2017,44(4):34 − 40. (in Chinese with English abstract)

    [15]

    金秉福, 张云吉, 栾光忠. 胶东半岛温泉的地热特征[J]. 水文地质工程地质,2000,27(5):31 − 33. [JIN Bingfu, ZHANG Yunji, LUAN Guangzhong. Geothermal characteristics of warm spring in Jiaodong Peninsula[J]. Hydrogeology & Engineering Geology,2000,27(5):31 − 33. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2000.05.010

    [16]

    苏春田, 聂发运, 邹胜章, 等. 湖南新田富锶地下水水化学特征与成因分析[J]. 现代地质,2018,32(3):554 − 564. [SU Chuntian, NIE Fayun, ZOU Shengzhang, et al. Hydrochemical characteristics and formation mechanism of strontium-rich groundwater in Xintian County, Hunan Province[J]. Geoscience,2018,32(3):554 − 564. (in Chinese with English abstract)

    [17]

    XU T F, SONNENTHAL E, SPYCHER N, et al. TOUGHREACT— A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration[J]. Computers & Geosciences, 2006, 32(2): 145 − 165.

    [18]

    GIBBS R J. Mechanisms controlling world water chemistry[J]. Science,1970,170(3962):1088 − 1090. doi: 10.1126/science.170.3962.1088

    [19]

    杨楠, 苏春利, 曾邯斌, 等. 基于水化学和氢氧同位素的兴隆县地下水演化过程研究[J]. 水文地质工程地质,2020,47(6):154 − 162. [YANG Nan, SU Chunli, ZENG Hanbin, et al. Evolutional processes of groundwater in Xinglong County based on hydrochemistry and hydrogen and oxygen isotopes[J]. Hydrogeology & Engineering Geology,2020,47(6):154 − 162. (in Chinese with English abstract)

    [20]

    HU S Y, XIAO C L, LIANG X J, et al. Influence of water-rock interaction on the pH and heavy metals content of groundwater during in situ oil shale exploitation[J]. Oil Shale,2020,37(2):104-118. doi: 10.3176/oil.2020.2.02

    [21]

    林聪业, 孙占学, 高柏, 等. 拉萨地区地下水水化学特征及形成机制研究[J]. 地学前缘,2021,28(5):49 − 58. [LIN Congye, SUN Zhanxue, GAO Bai, et al. Hydrochemical characteristics and formation mechanism of groundwater in Lhasa area, China[J]. Earth Science Frontiers,2021,28(5):49 − 58. (in Chinese with English abstract)

    [22]

    WANG X C, ZHOU X, ZHAO J B, et al. Hydrochemical evolution and reaction simulation of travertine deposition of the Lianchangping hot springs in Yunnan, China[J]. Quaternary International,2015,374:62 − 75. doi: 10.1016/j.quaint.2014.09.046

    [23]

    WANG X C, ZHOU X. Geothermometry and circulation behavior of the hot springs in Yunlong County of Yunnan in southwest China[J]. Geofluids,2019,2019:8432496.

    [24]

    FOURNIER R O. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems[J]. Journal of Volcanology and Geothermal Research,1979,5(1/2):1 − 16. doi: 10.1016/0377-0273(79)90029-5

    [25]

    FOURNIER R O. Silica in thermal waters: laboratory and field investigations[C]//Proceedings of international symposium on hydrogeochemistry and biogeochemistry. Tokyo, 1973: 132 − 139.

    [26]

    FOURNIER R O, POTTER II R W. An equation correlating the solubility of quartz in water from 25 °C to 900 °C at pressures up to 10 000 bars[J]. Geochimica et Cosmochimica Acta,1982,46(10):1969 − 1973. doi: 10.1016/0016-7037(82)90135-1

    [27]

    HENLEY R W, ELLIS A J. Geothermal systems ancient and modern: A geochemical review[J]. Earth-Science Reviews,1983,19(1):1 − 50. doi: 10.1016/0012-8252(83)90075-2

    [28]

    LUND J W, FREESTON D H. World-wide direct uses of geothermal energy 2000[J]. Geothermics,2001,30(1):29 − 68. doi: 10.1016/S0375-6505(00)00044-4

    [29]

    JOKSIMOVIĆ M, PAVLOVIĆ M A. Conditions and possibilities of direct utilisation of thermal-mineral waters in Raska region, Serbia[J]. Renewable and Sustainable Energy Reviews,2014,32:107 − 113. doi: 10.1016/j.rser.2013.12.048

    [30]

    RISTIĆ D, VUKOIČIĆ D, NIKOLIĆ M, et al. Capacities and energy potential of thermal-mineral springs in the area of the Kopaonik tourist region (Serbia)[J]. Renewable and Sustainable Energy Reviews,2019,102:129 − 138. doi: 10.1016/j.rser.2018.12.005

    [31]

    MIRANDA M M, MATOS C R, RODRIGUES N V, et al. Effect of temperature on the thermal conductivity of a granite with high heat production from Central Portugal[J]. Journal of Iberian Geology,2019,45(1):147 − 161. doi: 10.1007/s41513-018-0096-9

  • 加载中

(7)

(5)

计量
  • 文章访问数:  734
  • PDF下载数:  56
  • 施引文献:  0
出版历程
收稿日期:  2021-06-22
修回日期:  2021-12-22
录用日期:  2021-12-22
刊出日期:  2022-09-15

目录