有机质对海相软土物理力学特性的影响效应分析

苟富刚, 龚绪龙, 陆徐荣, 李明亮. 有机质对海相软土物理力学特性的影响效应分析[J]. 水文地质工程地质, 2022, 49(5): 195-203. doi: 10.16030/j.cnki.issn.1000-3665.202109033
引用本文: 苟富刚, 龚绪龙, 陆徐荣, 李明亮. 有机质对海相软土物理力学特性的影响效应分析[J]. 水文地质工程地质, 2022, 49(5): 195-203. doi: 10.16030/j.cnki.issn.1000-3665.202109033
GOU Fugang, GONG Xulong, LU Xurong, LI Mingliang. Effect of organic matter content on physical-mechanicalproperties of sea soft soil[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 195-203. doi: 10.16030/j.cnki.issn.1000-3665.202109033
Citation: GOU Fugang, GONG Xulong, LU Xurong, LI Mingliang. Effect of organic matter content on physical-mechanicalproperties of sea soft soil[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 195-203. doi: 10.16030/j.cnki.issn.1000-3665.202109033

有机质对海相软土物理力学特性的影响效应分析

  • 基金项目: 连云港市人民政府、江苏省自然资源厅连云港城市地质调查项目(20170821);江苏省自然资源厅江苏海岸带地质资源环境监测项目(JTCC—2102AW3503)
详细信息
    作者简介: 苟富刚(1985-),男,硕士,高级工程师,主要从事工程地质和环境地质研究工作.E-mail:gfggfg@foxmail.com
  • 中图分类号: P642.13+3

Effect of organic matter content on physical-mechanicalproperties of sea soft soil

  • 有机质是海相软土的重要组成部分,其对土体物理力学性质的影响有待深入研究。以连云港地区全新世海相软土为例,进行百组土体有机质物理力学试验。结果表明,研究区软土有机质含量平均值为0.98%,在0.90%~1.00%这个区间分布最为广泛。有机质含量在空间上分布不均,平行海岸线较垂直海岸线土体有机质含量变化小,自上向下变化规律复杂,但随着深度的增加有机质含量有增加的趋势;有机质含量与土体天然含水率、塑限、液限在0.01水平上显著正相关,与土体天然密度、干密度和比重在0.01水平上显著负相关,与土体粉粒含量在0.05水平上显著正相关,与土体黏粒含量相关性差;有机质含量与固结压力≤400 kPa阶段的孔隙比在0.01水平上显著正相关,与固结压力>400 kPa时的孔隙比相关性变差,这与有机质形成的复合体被破坏有关;海相软土黏土矿物、含盐量及含水率高,有机质与黏土矿物在碱性环境多通过阳离子键桥的方式来结合,形成有机复合体,可能参与千年及万年尺度的碳循环;研究土层最大埋深达30 m,符合有机质深埋的演化规律,而研究土体沉积时间距今最高才约8000 a,推测研究土体有机质还未达到平衡状态,还在进一步的循环演化过程当中。上述相关研究成果对海相软土分布区工程建设具有一定的参考价值。

  • 加载中
  • 图 1  研究区沉积盆地与构造、采样位置平面分布图

    Figure 1. 

    图 2  有机质含量分布频次统计

    Figure 2. 

    图 3  有机质含量随深度变化曲线(剖面1)

    Figure 3. 

    图 4  有机质含量随深度变化曲线(剖面2)

    Figure 4. 

    图 5  有机质含量与天然含水率拟合图

    Figure 5. 

    图 6  有机质含量与土体不同固结压力下的孔隙比拟合图

    Figure 6. 

    图 7  有机质含量与压缩指数、回弹指数拟合图

    Figure 7. 

    图 8  有机质循环演化图

    Figure 8. 

    表 1  软土的物理力学特性

    Table 1.  Physico-mechanical properties of soft clay

    项目有机质
    含量/%
    粉粒
    含量/%
    黏粒
    含量/%
    天然密度
    /(g·cm−3
    天然含
    水率/%
    天然
    孔隙比
    液限/%塑性
    指数/%
    液性
    指数/%
    压缩系数
    /MPa−1
    压缩
    模量/MPa
    cUU
    /MPa
    φUU
    /(°)
    最大值1.5668.751.11.9374.91.9856.1026.605.182.514.1017.002.90
    最小值0.3645.231.11.5630.91.0022.8010.001.000.501.102.000.30
    平均值0.9858.839.51.7054.01.4243.5419.331.581.282.007.230.87
    个数153484814114114114114114197973131
    变异系数0.220.090.120.040.160.150.130.180.330.300.260.500.63
    偏度−0.34−0.760.780.73−0.18−0.12−0.25−0.582.980.401.520.882.11
    峰度0.840.460.570.240.540.210.671.1416.680.343.590.575.56
      注:cUU为三轴UU试验得出的黏聚强度; φUU为三轴UU试验得出的内摩擦角。
    下载: 导出CSV

    表 2  有机质含量与土体物理指标相关性统计表

    Table 2.  Correlation statistics of SOM content and soil physical indicators

    指标深度粉粒含量黏粒含量砂粒含量天然含水率比重湿密度干密度孔隙比液限液限塑性指数液性指数
    相关性0.476**0.342*−0.013−0.325*0.604**−0.526**−0.630**−0.626**0.596**0.349**0.425**0.252*0.255*
    样本数89484848747474747474747474
      注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。负值表示负相关,反之亦然。
    下载: 导出CSV

    表 3  有机质含量与土体不同固结压力下孔隙比的相关性

    Table 3.  Correlation between SOM content and soil void ratio under various pressures

    指标e12.5e25e50e75e100e200e400e800e1600e3200压缩
    系数
    压缩
    模量
    相关性0.2570.606**0.609**0.592**0.595**0.563**0.483**0.311*−0.062−0.2390.598**−0.604**
    样本数134174417474746041174174
      注:e12.5为固结压力12.5 kPa下的孔隙比,其它依次类推;**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。负值表示负相关,反之亦然
    下载: 导出CSV
  • [1]

    SCHARLEMANN J P,TANNER E V,HIEDERER R,et al. Global soil carbon:Understanding and managing the largest terrestrial carbon pool[J]. Carbon Management,2014,5(1):81 − 91. doi: 10.4155/cmt.13.77

    [2]

    DONALD L W. Use of humic substances in remediation of contaminated environments[M]//KLAVINS M, SERZANE J. Bioremediation of Contaminated Soils. Boca Raton: CRC Press, 2000: 231 − 249.

    [3]

    WU F C, XING B S. Natural organic matter and its mechanism in the environment -vol 1[M]. Beijing: Geological Publishing House, 2010: 83 − 109.

    [4]

    STEVENSON F J. Humus chemistry: Genesis, composition, reactions [M]. Hoboken: John Wiley & Sons, 1994.

    [5]

    孙旭辉,李福春,师焕芝,等. 土壤腐殖物质特征及其对有机碳长时间尺度稳定性的指示:以陕西洛川黄土剖面为例[J]. 地学前缘,2011,18(6):117 − 124. [SUN Xuhui,LI Fuchun,SHI Huanzhi,et al. Characteristics of humic substances in soil and its implication to long-term stability of organic carbon:A case of Luochuan loess profile[J]. Earth Science Frontiers,2011,18(6):117 − 124. (in Chinese with English abstract)

    [6]

    MIKUTTA R,SCHAUMANN G E,GILDEMEISTER D,et al. Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3-4100 kyr),Hawaiian Islands[J]. Geochimica et Cosmochimica Acta,2009,73(7):2034 − 2060. doi: 10.1016/j.gca.2008.12.028

    [7]

    王晓军. 连云港基桩工程倾斜事故及对策分析[J]. 江苏建筑,2016(1):98 − 100. [WANG Xiaojun. Analysis of Lianyungang pile engineering tilt accident and countermeasure[J]. Jiangsu Construction,2016(1):98 − 100. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-6270.2016.01.027

    [8]

    章定文,刘松玉. 试论连云港海相软土路堤沉降规律[J]. 岩土力学,2006,27(2):304 − 308. [ZHANG Dingwen,LIU Songyu. Settlement features of embankment of Lianyungang marine clay[J]. Rock and Soil Mechanics,2006,27(2):304 − 308. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2006.02.028

    [9]

    李学,刘治清,宋晶,等. 有机质在吹填淤泥固结中的微宏观特征[J]. 中国海洋大学学报(自然科学版),2017,47(10):28 − 35. [LI Xue,LIU Zhiqing,SONG Jing,et al. Micro-macro characteristics of organic matters in dredger fill consolidation[J]. Periodical of Ocean University of China,2017,47(10):28 − 35. (in Chinese with English abstract)

    [10]

    牟春梅,李佰锋. 有机质含量对软土力学性质影响效应分析[J]. 水文地质工程地质,2008,35(3):42 − 46. [MU Chunmei,LI Baifeng. Influence of organic matter on mechanical character of soft soil[J]. Hydrogeology & Engineering Geology,2008,35(3):42 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.03.011

    [11]

    PAUL M A,BARRAS B F. Role of organic material in the plasticity of Bothkennar clay[J]. Géotechnique,1999,49(4):529 − 535.

    [12]

    SANTAGATA M,BOBET A,JOHNSTON C T,et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(1):1 − 13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)

    [13]

    SHACKELFORD C D,MITCHELL J K,SOGA K. Fundamentals of Soil Behavior[J]. Journal of Hazardous Materials,2005,125(1/2/3):275 − 276.

    [14]

    KELLER G H. Organic matter and the geotechnical properties of submarine sediments[J]. Geo-Marine Letters,1982,2(3/4):191 − 198.

    [15]

    MESRI G,STARK T D,AJLOUNI M A,et al. Secondary compression of peat with or without surcharging[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(5):411 − 421. doi: 10.1061/(ASCE)1090-0241(1997)123:5(411)

    [16]

    ISLAM M R, ALAMGIR M, BASHAR M A. Compressibility properties of reconstituted organic soils at Khulna region of Bangladesh[C]// RABBEE T. Soft soil engineering: Proceedings of the Fourth International Conference on soft soil engineering. Vancouver: CRC Press, 2006: 367.

    [17]

    刘飞,陈俊松,柏双友,等. 高有机质软土固结特性与机制分析[J]. 岩土力学,2013,34(12):3453 − 3458. [LIU Fei,CHEN Junsong,BAI Shuangyou,et al. Analysis of formation mechanism and consolidation characteristics of high organic soft clay[J]. Rock and Soil Mechanics,2013,34(12):3453 − 3458. (in Chinese with English abstract) doi: 10.16285/j.rsm.2013.12.003

    [18]

    蔡国军,刘松玉,邵光辉,等. 基于电阻率静力触探的海相黏土成因特性分析[J]. 岩土工程学报,2008,30(4):529 − 535. [CAI Guojun,LIU Songyu,SHAO Guanghui,et al. Analysis of formation characteristics of marine clay based on resistivity cone penetration test (RCPT)[J]. Chinese Journal of Geotechnical Engineering,2008,30(4):529 − 535. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2008.04.011

    [19]

    严海兵,陈敏东,李秉柏. 江苏滨海盐土有机质含量的空间变异研究[J]. 江苏农业科学,2008,36(3):224 − 228. [YAN Haibing,CHEN Mindong,LI Bingbai. Spatial variation of organic matter content in Jiangsu coastal salt soils[J]. Jiangsu Agricultural Sciences,2008,36(3):224 − 228. (in Chinese) doi: 10.3969/j.issn.1002-1302.2008.03.079

    [20]

    杨晓明. 水泥处置高含盐量软土的微观试验和机理研究[D]. 上海: 同济大学, 2006

    YANG Xiaoming. Microstructure and mechanism research on cement stabilized salt-rich clay[D]. Shanghai: Tongji University, 2006. (in Chinese with English abstract)

    [21]

    彭丹. 土工试验中有机质含量测定方法对比分析[J]. 广东化工,2018,45(20):44 − 45. [PENG Dan. Comparative analysis of methods for determination of organic matter content in geotechnical tests[J]. Guangdong Chemical Industry,2018,45(20):44 − 45. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-1865.2018.20.019

    [22]

    苟富刚,龚绪龙,杨磊,等. 江苏沿海地区土体含盐特征及指示作用[J]. 长江流域资源与环境,2018,27(6):1380 − 1387. [GOU Fugang,GONG Xulong,YANG Lei,et al. Indicative functions and characteristics of soil salinity in coastal Jiangsu area[J]. Resources and Environment in the Yangtze Basin,2018,27(6):1380 − 1387. (in Chinese with English abstract) doi: 10.11870/cjlyzyyhj201806022

    [23]

    YOON G L,KIM B T,JEON S S. Empirical correlations of compression index for marine clay from regression analysis[J]. Canadian Geotechnical Journal,2004,41(6):1213 − 1221. doi: 10.1139/t04-057

    [24]

    KVAM P H, VIDAKOVIC B. Nonparametric statistics with applications to science and engineering[M]. Hoboken: John Wiley &Sons, 2007.

    [25]

    COVALEDA S,PAJARES S,GALLARDO J F,et al. Short-term changes in C and N distribution in soil particle size fractions induced by agricultural practices in a cultivated volcanic soil from Mexico[J]. Organic Geochemistry,2006,37(12):1943 − 1948. doi: 10.1016/j.orggeochem.2006.09.001

    [26]

    BUSCH W H,KELLER G H. The physical properties of Peru-Chile continental margin sediments the influence of coastal upwelling on sediment properties[J]. Journal of Sedimentary Research,1981,51:709 − 715.

    [27]

    李生林,秦素娟,韩爱民. 软土中的蛋白质总量及其工程意义[J]. 岩土工程学报,1994,16(6):56 − 63. [LI Shenglin,QIN Sujuan,HAN Aimin. Total protein content in soft soil and its application to engineering geology[J]. Chinese Journal of Geotechnical Engineering,1994,16(6):56 − 63. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1994.06.007

    [28]

    KCONONOVA M. Soil organic matter: Its nature, its role in soil formation and in soil fertility[M]. Britain: Pergamon press , 2013.

    [29]

    KAISER M,ELLERBROCK R H. Functional characterization of soil organic matter fractions different in solubility originating from a long-term field experiment[J]. Geoderma,2005,127(3/4):196 − 206.

    [30]

    苟富刚,龚绪龙,王光亚. 连云港海相软土不排水强度特征[J]. 吉林大学学报(地球科学版),2018,48(4):1165 − 1173. [GOU Fugang,GONG Xulong,WANG Guangya. Shear strength and failure characteristics of marine soft soil in Lianyungang[J]. Journal of Jilin University(Earth Science Edition),2018,48(4):1165 − 1173. (in Chinese with English abstract)

    [31]

    WENG L,RIEMSDIJK W H V,HIEMSTRA T. Adsorption of humic acids onto goethite:Effects of molar mass,pH and ionic strength[J]. Journal of Colloid and Interface Science,2007,314(1):107 − 118. doi: 10.1016/j.jcis.2007.05.039

    [32]

    滕飞,李福春,吴志强,等. 高岭石和蒙脱石吸附胡敏酸的对比研究[J]. 中国地质,2009,36(4):892 − 898. [TENG Fei,LI Fuchun,WU Zhiqiang,et al. A comparative study of the humic acid adsorption capability between kaolinite and montmorillonite[J]. Geology in China,2009,36(4):892 − 898. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2009.04.017

    [33]

    LIU A,GONZALEZ R D. Adsorption/ desorption in a system consisting of humic acid,heavy metals,and clay minerals[J]. Journal of Colloid and Interface Science,1999,218(1):225 − 232. doi: 10.1006/jcis.1999.6419

    [34]

    YARIV S, CROSS H. Organo-clay complexes and interactions[M]. New York: Dekker, 2001: 39 −111.

  • 加载中

(8)

(3)

计量
  • 文章访问数:  1147
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2021-09-14
修回日期:  2021-11-03
刊出日期:  2022-09-15

目录