Effect of organic matter content on physical-mechanicalproperties of sea soft soil
-
摘要:
有机质是海相软土的重要组成部分,其对土体物理力学性质的影响有待深入研究。以连云港地区全新世海相软土为例,进行百组土体有机质物理力学试验。结果表明,研究区软土有机质含量平均值为0.98%,在0.90%~1.00%这个区间分布最为广泛。有机质含量在空间上分布不均,平行海岸线较垂直海岸线土体有机质含量变化小,自上向下变化规律复杂,但随着深度的增加有机质含量有增加的趋势;有机质含量与土体天然含水率、塑限、液限在0.01水平上显著正相关,与土体天然密度、干密度和比重在0.01水平上显著负相关,与土体粉粒含量在0.05水平上显著正相关,与土体黏粒含量相关性差;有机质含量与固结压力≤400 kPa阶段的孔隙比在0.01水平上显著正相关,与固结压力>400 kPa时的孔隙比相关性变差,这与有机质形成的复合体被破坏有关;海相软土黏土矿物、含盐量及含水率高,有机质与黏土矿物在碱性环境多通过阳离子键桥的方式来结合,形成有机复合体,可能参与千年及万年尺度的碳循环;研究土层最大埋深达30 m,符合有机质深埋的演化规律,而研究土体沉积时间距今最高才约8000 a,推测研究土体有机质还未达到平衡状态,还在进一步的循环演化过程当中。上述相关研究成果对海相软土分布区工程建设具有一定的参考价值。
Abstract:Soil organic matter (SOM) is an important part of marine soft soil, and its role in the physico-mechanical properties of the soil needs to be studied urgently. The Holocene marine soft soil in the Lianyungang area is taken as an example, and a hundred groups of SOM tests and physico-mechanical tests are carried out. The results show that the average SOM content is 0.98% in the study area. The SOM content is most widely distributed in the interval of 0.90%−1.00%. The SOM content is unevenly distributed in space. The SOM content of the parallel coastline has a smaller change than that of the vertical coastline. The top-down change rule is complicated, but the overall trend of the SOM content increases with the increasing depth. SOM content is significantly positively correlated with natural moisture content, plastic limit and liquid limit at the level of 0.01. The SOM content has a significant negative correlation with the natural density, dry density and specific gravity in the soil at the level of 0.01. The SOM content and the powder content in the soil are significantly positively correlated at the 0.05 level. The SOM content are poorly correlated with clay content. The SOM content is significantly positively correlated with the void ratio at the stage when the consolidation pressure is less than or equal to 400 kPa at the level of 0.01. The correlation between the void ratio and the SOM content becomes worse when the consolidation pressure is greater than 400 kPa, which is related to the destruction of the complex formed by the SOM content. Marine soft clay minerals have high salinity and water content. SOM and clay minerals are mostly combined through cationic bond bridges in alkaline environments to form organic complexes, which may participate in the millennium and 10 000-year scale carbon cycle. The maximum buried depth of the studied soil is 30 m, which is in line with the evolution law of deep burial of SOM. The maximum deposition time of the studied soil is only about 8 000 years. It is speculated that the SOM has not reached the equilibrium state in the study area, and it is still in the process of further cyclic evolution. The relevant research results of this study are of certain reference value for the engineering construction in the marine soft soil distribution areas.
-
Key words:
- organic matter /
- humus /
- sedimentary age /
- physical mechanics /
- carbon cycle
-
表 1 软土的物理力学特性
Table 1. Physico-mechanical properties of soft clay
项目 有机质
含量/%粉粒
含量/%黏粒
含量/%天然密度
/(g·cm−3)天然含
水率/%天然
孔隙比液限/% 塑性
指数/%液性
指数/%压缩系数
/MPa−1压缩
模量/MPacUU
/MPaφUU
/(°)最大值 1.56 68.7 51.1 1.93 74.9 1.98 56.10 26.60 5.18 2.51 4.10 17.00 2.90 最小值 0.36 45.2 31.1 1.56 30.9 1.00 22.80 10.00 1.00 0.50 1.10 2.00 0.30 平均值 0.98 58.8 39.5 1.70 54.0 1.42 43.54 19.33 1.58 1.28 2.00 7.23 0.87 个数 153 48 48 141 141 141 141 141 141 97 97 31 31 变异系数 0.22 0.09 0.12 0.04 0.16 0.15 0.13 0.18 0.33 0.30 0.26 0.50 0.63 偏度 −0.34 −0.76 0.78 0.73 −0.18 −0.12 −0.25 −0.58 2.98 0.40 1.52 0.88 2.11 峰度 0.84 0.46 0.57 0.24 0.54 0.21 0.67 1.14 16.68 0.34 3.59 0.57 5.56 注:cUU为三轴UU试验得出的黏聚强度; φUU为三轴UU试验得出的内摩擦角。 表 2 有机质含量与土体物理指标相关性统计表
Table 2. Correlation statistics of SOM content and soil physical indicators
指标 深度 粉粒含量 黏粒含量 砂粒含量 天然含水率 比重 湿密度 干密度 孔隙比 液限 液限 塑性指数 液性指数 相关性 0.476** 0.342* −0.013 −0.325* 0.604** −0.526** −0.630** −0.626** 0.596** 0.349** 0.425** 0.252* 0.255* 样本数 89 48 48 48 74 74 74 74 74 74 74 74 74 注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。负值表示负相关,反之亦然。 表 3 有机质含量与土体不同固结压力下孔隙比的相关性
Table 3. Correlation between SOM content and soil void ratio under various pressures
指标 e12.5 e25 e50 e75 e100 e200 e400 e800 e1600 e3200 压缩
系数压缩
模量相关性 0.257 0.606** 0.609** 0.592** 0.595** 0.563** 0.483** 0.311* −0.062 −0.239 0.598** −0.604** 样本数 13 41 74 41 74 74 74 60 41 17 41 74 注:e12.5为固结压力12.5 kPa下的孔隙比,其它依次类推;**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。负值表示负相关,反之亦然 -
[1] SCHARLEMANN J P,TANNER E V,HIEDERER R,et al. Global soil carbon:Understanding and managing the largest terrestrial carbon pool[J]. Carbon Management,2014,5(1):81 − 91. doi: 10.4155/cmt.13.77
[2] DONALD L W. Use of humic substances in remediation of contaminated environments[M]//KLAVINS M, SERZANE J. Bioremediation of Contaminated Soils. Boca Raton: CRC Press, 2000: 231 − 249.
[3] WU F C, XING B S. Natural organic matter and its mechanism in the environment -vol 1[M]. Beijing: Geological Publishing House, 2010: 83 − 109.
[4] STEVENSON F J. Humus chemistry: Genesis, composition, reactions [M]. Hoboken: John Wiley & Sons, 1994.
[5] 孙旭辉,李福春,师焕芝,等. 土壤腐殖物质特征及其对有机碳长时间尺度稳定性的指示:以陕西洛川黄土剖面为例[J]. 地学前缘,2011,18(6):117 − 124. [SUN Xuhui,LI Fuchun,SHI Huanzhi,et al. Characteristics of humic substances in soil and its implication to long-term stability of organic carbon:A case of Luochuan loess profile[J]. Earth Science Frontiers,2011,18(6):117 − 124. (in Chinese with English abstract)
[6] MIKUTTA R,SCHAUMANN G E,GILDEMEISTER D,et al. Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3-4100 kyr),Hawaiian Islands[J]. Geochimica et Cosmochimica Acta,2009,73(7):2034 − 2060. doi: 10.1016/j.gca.2008.12.028
[7] 王晓军. 连云港基桩工程倾斜事故及对策分析[J]. 江苏建筑,2016(1):98 − 100. [WANG Xiaojun. Analysis of Lianyungang pile engineering tilt accident and countermeasure[J]. Jiangsu Construction,2016(1):98 − 100. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-6270.2016.01.027
[8] 章定文,刘松玉. 试论连云港海相软土路堤沉降规律[J]. 岩土力学,2006,27(2):304 − 308. [ZHANG Dingwen,LIU Songyu. Settlement features of embankment of Lianyungang marine clay[J]. Rock and Soil Mechanics,2006,27(2):304 − 308. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2006.02.028
[9] 李学,刘治清,宋晶,等. 有机质在吹填淤泥固结中的微宏观特征[J]. 中国海洋大学学报(自然科学版),2017,47(10):28 − 35. [LI Xue,LIU Zhiqing,SONG Jing,et al. Micro-macro characteristics of organic matters in dredger fill consolidation[J]. Periodical of Ocean University of China,2017,47(10):28 − 35. (in Chinese with English abstract)
[10] 牟春梅,李佰锋. 有机质含量对软土力学性质影响效应分析[J]. 水文地质工程地质,2008,35(3):42 − 46. [MU Chunmei,LI Baifeng. Influence of organic matter on mechanical character of soft soil[J]. Hydrogeology & Engineering Geology,2008,35(3):42 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.03.011
[11] PAUL M A,BARRAS B F. Role of organic material in the plasticity of Bothkennar clay[J]. Géotechnique,1999,49(4):529 − 535.
[12] SANTAGATA M,BOBET A,JOHNSTON C T,et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(1):1 − 13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)
[13] SHACKELFORD C D,MITCHELL J K,SOGA K. Fundamentals of Soil Behavior[J]. Journal of Hazardous Materials,2005,125(1/2/3):275 − 276.
[14] KELLER G H. Organic matter and the geotechnical properties of submarine sediments[J]. Geo-Marine Letters,1982,2(3/4):191 − 198.
[15] MESRI G,STARK T D,AJLOUNI M A,et al. Secondary compression of peat with or without surcharging[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(5):411 − 421. doi: 10.1061/(ASCE)1090-0241(1997)123:5(411)
[16] ISLAM M R, ALAMGIR M, BASHAR M A. Compressibility properties of reconstituted organic soils at Khulna region of Bangladesh[C]// RABBEE T. Soft soil engineering: Proceedings of the Fourth International Conference on soft soil engineering. Vancouver: CRC Press, 2006: 367.
[17] 刘飞,陈俊松,柏双友,等. 高有机质软土固结特性与机制分析[J]. 岩土力学,2013,34(12):3453 − 3458. [LIU Fei,CHEN Junsong,BAI Shuangyou,et al. Analysis of formation mechanism and consolidation characteristics of high organic soft clay[J]. Rock and Soil Mechanics,2013,34(12):3453 − 3458. (in Chinese with English abstract) doi: 10.16285/j.rsm.2013.12.003
[18] 蔡国军,刘松玉,邵光辉,等. 基于电阻率静力触探的海相黏土成因特性分析[J]. 岩土工程学报,2008,30(4):529 − 535. [CAI Guojun,LIU Songyu,SHAO Guanghui,et al. Analysis of formation characteristics of marine clay based on resistivity cone penetration test (RCPT)[J]. Chinese Journal of Geotechnical Engineering,2008,30(4):529 − 535. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2008.04.011
[19] 严海兵,陈敏东,李秉柏. 江苏滨海盐土有机质含量的空间变异研究[J]. 江苏农业科学,2008,36(3):224 − 228. [YAN Haibing,CHEN Mindong,LI Bingbai. Spatial variation of organic matter content in Jiangsu coastal salt soils[J]. Jiangsu Agricultural Sciences,2008,36(3):224 − 228. (in Chinese) doi: 10.3969/j.issn.1002-1302.2008.03.079
[20] 杨晓明. 水泥处置高含盐量软土的微观试验和机理研究[D]. 上海: 同济大学, 2006
YANG Xiaoming. Microstructure and mechanism research on cement stabilized salt-rich clay[D]. Shanghai: Tongji University, 2006. (in Chinese with English abstract)
[21] 彭丹. 土工试验中有机质含量测定方法对比分析[J]. 广东化工,2018,45(20):44 − 45. [PENG Dan. Comparative analysis of methods for determination of organic matter content in geotechnical tests[J]. Guangdong Chemical Industry,2018,45(20):44 − 45. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-1865.2018.20.019
[22] 苟富刚,龚绪龙,杨磊,等. 江苏沿海地区土体含盐特征及指示作用[J]. 长江流域资源与环境,2018,27(6):1380 − 1387. [GOU Fugang,GONG Xulong,YANG Lei,et al. Indicative functions and characteristics of soil salinity in coastal Jiangsu area[J]. Resources and Environment in the Yangtze Basin,2018,27(6):1380 − 1387. (in Chinese with English abstract) doi: 10.11870/cjlyzyyhj201806022
[23] YOON G L,KIM B T,JEON S S. Empirical correlations of compression index for marine clay from regression analysis[J]. Canadian Geotechnical Journal,2004,41(6):1213 − 1221. doi: 10.1139/t04-057
[24] KVAM P H, VIDAKOVIC B. Nonparametric statistics with applications to science and engineering[M]. Hoboken: John Wiley &Sons, 2007.
[25] COVALEDA S,PAJARES S,GALLARDO J F,et al. Short-term changes in C and N distribution in soil particle size fractions induced by agricultural practices in a cultivated volcanic soil from Mexico[J]. Organic Geochemistry,2006,37(12):1943 − 1948. doi: 10.1016/j.orggeochem.2006.09.001
[26] BUSCH W H,KELLER G H. The physical properties of Peru-Chile continental margin sediments the influence of coastal upwelling on sediment properties[J]. Journal of Sedimentary Research,1981,51:709 − 715.
[27] 李生林,秦素娟,韩爱民. 软土中的蛋白质总量及其工程意义[J]. 岩土工程学报,1994,16(6):56 − 63. [LI Shenglin,QIN Sujuan,HAN Aimin. Total protein content in soft soil and its application to engineering geology[J]. Chinese Journal of Geotechnical Engineering,1994,16(6):56 − 63. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1994.06.007
[28] KCONONOVA M. Soil organic matter: Its nature, its role in soil formation and in soil fertility[M]. Britain: Pergamon press , 2013.
[29] KAISER M,ELLERBROCK R H. Functional characterization of soil organic matter fractions different in solubility originating from a long-term field experiment[J]. Geoderma,2005,127(3/4):196 − 206.
[30] 苟富刚,龚绪龙,王光亚. 连云港海相软土不排水强度特征[J]. 吉林大学学报(地球科学版),2018,48(4):1165 − 1173. [GOU Fugang,GONG Xulong,WANG Guangya. Shear strength and failure characteristics of marine soft soil in Lianyungang[J]. Journal of Jilin University(Earth Science Edition),2018,48(4):1165 − 1173. (in Chinese with English abstract)
[31] WENG L,RIEMSDIJK W H V,HIEMSTRA T. Adsorption of humic acids onto goethite:Effects of molar mass,pH and ionic strength[J]. Journal of Colloid and Interface Science,2007,314(1):107 − 118. doi: 10.1016/j.jcis.2007.05.039
[32] 滕飞,李福春,吴志强,等. 高岭石和蒙脱石吸附胡敏酸的对比研究[J]. 中国地质,2009,36(4):892 − 898. [TENG Fei,LI Fuchun,WU Zhiqiang,et al. A comparative study of the humic acid adsorption capability between kaolinite and montmorillonite[J]. Geology in China,2009,36(4):892 − 898. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2009.04.017
[33] LIU A,GONZALEZ R D. Adsorption/ desorption in a system consisting of humic acid,heavy metals,and clay minerals[J]. Journal of Colloid and Interface Science,1999,218(1):225 − 232. doi: 10.1006/jcis.1999.6419
[34] YARIV S, CROSS H. Organo-clay complexes and interactions[M]. New York: Dekker, 2001: 39 −111.