-
摘要:
潜流交换研究涉及地表水-地下水系统交互作用的物理机制、影响因素和生化作用等方面,是近年来水文学、生态学、环境学等学科的研究热点。潜流交换过程包含水流运动、溶质运移以及能量传输过程。以稳态流动条件作为控制因素的潜流交换研究成果已经不能满足相关学科发展的要求。因此,近年来非稳态潜流交换过程的研究及其成果渐受关注。当前相关研究多以物理模型试验为主(如室内水槽试验、示踪试验),辅以数值模拟或遥感技术进行验证,进而总结非稳态潜流交换过程水动力交换和能量交换过程规律。未来研究应在多时空尺度,集合多种高精度监测手段,研究潜流交换中的影响因素(如河流水位波动),开发更精确的地表水-地下水耦合模型,系统认识非稳态潜流交换过程。有关非稳态潜流交换的研究结论将有效指导水资源保护与生态环境修复和综合治理。
Abstract:The study of hyporheic exchange involves the physical mechanism, influencing factors and biochemical effects on the interaction of a surface water-groundwater system, which is a hot research topic in recent years in the disciplines of hydrology, ecology and environmental science. The process of hyporheic exchange includes water movement, solute transport and energy transfer process. The research of hyporheic exchange under the steady-state flow conditions as the controlling factor can no longer meet the requirements of the development of related disciplines. Therefore, the research on the unsteady hyporheic exchange processes and its results have attracted attention in recent years. The current research is mostly based on physical model tests (e. g., indoor flume tests, tracer tests), supplemented by numerical simulations or remote sensing techniques for validation, and then summarizes the laws of hydrodynamic and energy exchange processes during the unsteady hyporheic exchange. Future research will integrate multiple high-precision monitoring tools at multiple spatial and temporal scales to study the influencing factors in hyporheic exchange (e. g., river level fluctuations), develop more accurate coupled surface water-groundwater models, and systematically understand the unsteady hyporheic exchange processes. The findings of the unsteady hyporheic exchange will effectively guide water resources protection and ecological restoration and comprehensive management.
-
Key words:
- unsteady process /
- hyporheic exchange /
- hydrodynamic exchange /
- energy exchange /
- numerical simulations
-
[1] 李英玉,赵坚,吕辉,等. 河岸带潜流层温度示踪流速计算方法[J]. 水科学进展,2016,27(3):423 − 429. [LI Yingyu,ZHAO Jian,LYU Hui,et al. Investigation on temperature tracer method calculated flow rate of hyporheic layer in riparian zone[J]. Advances in Water Science,2016,27(3):423 − 429. (in Chinese with English abstract)
[2] 吴光东,张潇,鲁程鹏. 河流潜流带和潜流交换时空变异特征研究综述[J]. 人民长江,2019,50(10):100 − 107. [WU Guangdong,ZHANG Xiao,LU Chengpeng. Spatial-temporal variability in hyporheic zone and hyporheic exchange[J]. Yangtze River,2019,50(10):100 − 107. (in Chinese with English abstract)
[3] 束龙仓,宫荣,栾佳文,等. 地下水与地表水水量交换识别及交换量计算—以新汴河宿州段为例[J]. 水科学进展,2022,33(1):57 − 67. [SHU Longcang,GONG Rong,LUAN Jiawen,et al. A integrated method to quantify flow exchanges between surface water and groundwater:Take Suzhou section of the Xinbian River as an example[J]. Advances in Water Science,2022,33(1):57 − 67. (in Chinese with English abstract) doi: 10.14042/j.cnki.32.1309.2022.01.006
[4] 李刚,马佰衡,周仰效,等. 白洋淀湖岸带地表水与地下水垂向交换研究[J]. 水文地质工程地质,2021,48(4):48 − 54. [LI Gang,MA Baiheng,ZHOU Yangxiao,et al. A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology,2021,48(4):48 − 54. (in Chinese with English abstract)
[5] 庄玮,鲁程鹏,朱宣毓,等. 黏土透镜体影响潜流交换的试验研究[J]. 长江科学院院报,2019,36(8):49 − 54. [ZHUANG Wei,LU Chengpeng,ZHU Xuanyu,et al. Hyporheic exchange under the influence of clay lens[J]. Journal of Yangtze River Scientific Research Institute,2019,36(8):49 − 54. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170634
[6] 吕辉,赵坚,陈孝兵,等. 洪水过程对垂向潜流交换作用的影响[J]. 水电能源科学,2015,33(3):14 − 18. [LV Hui,ZHAO Jian,CHEN Xiaobing,et al. The impact of flood process on vertical aquifer exchange[J]. Water Resources and Power,2015,33(3):14 − 18. (in Chinese with English abstract)
[7] 赵彪,任杰,欧玉鹏. 三角形河床形态对潜流交换作用的影响[J]. 水电能源科学,2019,37(7):26 − 29. [ZHAO Biao,REN Jie,OU Yupeng. Impact of triangular riverbed on morphologieson hyporheic exchange[J]. Water Resources and Power,2019,37(7):26 − 29. (in Chinese with English abstract)
[8] 陈孝兵,赵坚,李英玉,等. 床面形态驱动下潜流交换试验[J]. 水科学进展,2014,25(6):835 − 841. [CHEN Xiaobing,ZHAO Jian,LI Yingyu,et al. Experimental study of bedform-driven hyporheic exchange[J]. Advances in Water Science,2014,25(6):835 − 841. (in Chinese with English abstract)
[9] PHILLIPS C B,DALLMANN J D,JEROLMACK D J,et al. Fine-particle deposition,retention,and resuspension within a sand-bedded stream are determined by streambed morphodynamics[J]. Water Resources Research,2019,55(12):10303 − 10318. doi: 10.1029/2019WR025272
[10] MARTTILA H,TAMMELA S,MUSTONEN K R,et al. Contribution of flow conditions and sand addition on hyporheic zone exchange in gravel beds[J]. Hydrology Research,2019,50(3):878 − 885. doi: 10.2166/nh.2019.099
[11] MATHERS K L,HILL M J,WOOD C D,et al. The role of fine sediment characteristics and body size on the vertical movement of a freshwater amphipod[J]. Freshwater Biology,2019,64(1):152 − 163. doi: 10.1111/fwb.13202
[12] MAGLIOZZI C,GRABOWSKI R C,PACKMAN A I,et al. Toward a conceptual framework of hyporheic exchange across spatial scales[J]. Hydrology and Earth System Sciences,2018,22(12):6163 − 6185. doi: 10.5194/hess-22-6163-2018
[13] SHI W,CHEN Q,ZHANG J,et al. Spatial patterns of diffusive methane emissions across sediment deposited riparian zones in hydropower reservoirs[J]. Journal of Geophysical Research:Biogeosciences,2021,126(3):e2020JG005945.
[14] 于丹青,陈求稳,马宏海,等. 漫湾水库运行下库内洲滩潜流带夏季热传输特征[J]. 水利学报,2019,50(4):497 − 505. [YU Danqing,CHEN Qiuwen,MA Honghai,et al. Study on heat transfer across island riparian zone under Manwan reservoir operations in summer[J]. Journal of Hydraulic Engineering,2019,50(4):497 − 505. (in Chinese with English abstract)
[15] 姬雨雨,陈求稳,施文卿,等. 水库运行对漫湾库区洲滩水热交换影响[J]. 水科学进展,2018,29(1):73 − 79. [JI Yuyu,CHEN Qiuwen,SHI Wenqing,et al. Influence of reservoir operation on water and heat exchange in the Manwan's Island[J]. Advances in Water Science,2018,29(1):73 − 79. (in Chinese with English abstract)
[16] ZHU H Y,LIU D S,SHI W Q,et al. Nitrogen cycles within the stream-to-riparian continuum under flood waves[J]. Episodes Journal of International Geoscience,2019,42(4):333 − 341.
[17] FERENCZ S B,CARDENAS M B,NEILSON B T. Analysis of the effects of dam release properties and ambient groundwater flow on surface water-groundwater exchange over a 100-km-long reach[J]. Water Resources Research,2019,55(11):8526 − 8546. doi: 10.1029/2019WR025210
[18] HAN X,FANG H W,JOHNSON M F,et al. The impact of biological bedforms on near-bed and subsurface flow:a laboratory-evaluated numerical study of flow in the vicinity of pits and mounds[J]. Journal of Geophysical Research:Earth Surface,2019,124(7):1939 − 1957. doi: 10.1029/2019JF005000
[19] 程丹东,王元元,宋进喜,等. 不同底栖生物扰动对沉积物渗透性的影响[J]. 水土保持通报,2015,35(5):77 − 81. [CHENG Dandong,WANG Yuanyuan,SONG Jinxi,et al. Influences of bioturbations on vertical hydraulic conductivity diversity of sediments[J]. Bulletin of Soil and Water Conservation,2015,35(5):77 − 81. (in Chinese with English abstract)
[20] ZHANG J L,SONG J X,LONG Y Q,et al. Quantifying the spatial variations of hyporheic water exchange at catchment scale using the thermal method:a case study in the Weihe River,China[J]. Advances in Meteorology,2017:1 − 8.
[21] ISRAELSON O W,REEVE R C. Canal lining experiments in the delta area,Utah[J]. Utah Agricultural Experimental Station,1944,313:15 − 35.
[22] LEE D R. A device for measuring seepage flux in lakes and estuaries1[J]. Limnology and Oceanography,1977,22(1):140 − 147. doi: 10.4319/lo.1977.22.1.0140
[23] 杜尧,马腾,邓娅敏,等. 潜流带水文-生物地球化学:原理、方法及其生态意义[J]. 地球科学,2017,42(5):661 − 673. [DU Yao,MA Teng,DENG Yamin,et al. Hydro-biogeochemistry of hyporheic zone:Principles,methods and ecological significance[J]. Earth Science,2017,42(5):661 − 673. (in Chinese with English abstract)
[24] 王蕊,王中根,夏军. 地表水和地下水耦合模型研究进展[J]. 地理科学进展,2008,27(4):37 − 41. [WANG Rui,WANG Zhonggen,XIA Jun. Advances in the integrated surface water and groundwater model[J]. Progress in Geography,2008,27(4):37 − 41. (in Chinese with English abstract) doi: 10.11820/dlkxjz.2008.04.006
[25] BRIGGS M A,WANG C,DAY-LEWIS F D,et al. Return flows from beaver ponds enhance floodplain-to-river metals exchange in alluvial mountain catchments[J]. Science of the Total Environment,2019,685:357 − 369. doi: 10.1016/j.scitotenv.2019.05.371
[26] WELSH M K,VIDON P G,MCMILLAN S K. Stream and floodplain restoration impacts riparian zone hydrology of agricultural streams[J]. Environmental Monitoring and Assessment,2020,192(2):85. doi: 10.1007/s10661-019-7795-3
[27] HESTER E T,EASTES L A,WIDDOWSON M A. Effect of surface water stage fluctuation on mixing-dependent hyporheic denitrification in riverbed dunes[J]. Water Resources Research,2019,55(6):4668 − 4687. doi: 10.1029/2018WR024198
[28] ZHENG L Z,CARDENAS M B,WANG L C,et al. Ripple effects:Bed form morphodynamics cascading into hyporheic zone biogeochemistry[J]. Water Resources Research,2019,55(8):7320 − 7342. doi: 10.1029/2018WR023517
[29] YU K,DUAN Y,LIAO P,et al. Watershed-scale distributions of heavy metals in the hyporheic zones of a heavily polluted Maozhou River watershed,Southern China[J]. Chemosphere,2020,239:124773. doi: 10.1016/j.chemosphere.2019.124773
[30] MUGNAI R,SERPA-FILHO A,NESSIMIAN J L,et al. Morphological traits and vertical distribution of hyporheic chironomid larvae in Atlantic Forest streams[J]. Tropical Zoology,2019,32(3):119 − 134. doi: 10.1080/03946975.2019.1639034
[31] 朱静思,束龙仓,鲁程鹏. 基于热追踪方法的河道垂向潜流通量的非均质性研究[J]. 水利学报,2013,44(7):818 − 825. [ZHU Jingsi,SHU Longcang,LU Chengpeng. Study on the heterogeneity of vertical hyporheic flux using a heat tracing method[J]. Journal of Hydraulic Engineering,2013,44(7):818 − 825. (in Chinese with English abstract)
[32] REN J,CHENG J Q,YANG J,et al. A review on using heat as a tool for studying groundwater–surface water interactions[J]. Environmental Earth Sciences,2018,77(22):1 − 13.
[33] YEMELI E J, TEMGOUA E, KENGNI L, et al. Hydrogeochemistry of groundwater and surface water in Dschang town (West Cameroon):Alkali and alkaline-earth elements ascertain lithological and anthropogenic constraints[J]. Journal of Groundwater Science and Engineering,2021,9(3):212 − 224.
[34] ZHOU N Q, LI T S, ZHAO S, et al. Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones[J]. Journal of Groundwater Science and Engineering,2019,7(2):173 − 181.
[35] 郭伟强,宋进喜,刘琪,等. 潏河冬季潜流带水交换对沉积物间隙水水质的影响[J]. 环境科学学报,2018,38(5):1957 − 1967. [GUO Weiqiang,SONG Jinxi,LIU Qi,et al. Influence of hyporheic water exchange on quality of sediment pore water for the Juehe River in winter[J]. Acta Scientiae Circumstantiae,2018,38(5):1957 − 1967. (in Chinese with English abstract)
[36] REN J,ZHANG W B,YANG J,et al. Using water temperature series and hydraulic heads to quantify hyporheic exchange in the riparian zone[J]. Hydrogeology Journal,2019,27(4):1419 − 1437. doi: 10.1007/s10040-019-01934-z
计量
- 文章访问数: 815
- PDF下载数: 47
- 施引文献: 0