A study of the curing rate and stability of heavy metal chromium contaminated soil at electroplating sites
-
摘要:
为了解决宁波地区电镀场地重金属污染问题,研究利用自配固化剂开展铬污染土的毒性浸出试验、无侧限抗压强度试验、动荷载作用下的长期稳定性试验以及扫描电镜试验。在此基础上分析固化土的力学特性、浸出特性等随养护龄期、固化剂掺量、固化剂配比、铬污染水平的变化规律。结果表明:自配固化剂对铬污染土的固化率均达85%以上,固化率大体上随固化剂掺量增加而增大,随铬浓度上升而下降,随养护龄期的增加先上升后下降;固化铬污染土的无侧限抗压强度随龄期和固化剂掺量的增加而增大,随铬浓度的增加而降低;相对于施加动荷载作用前,经过28,90 d养护的固化土在长期动荷载后的固化率及无侧限抗压强度均有小幅度下降,但各因素的影响规律不变。试验表明自配固化剂对铬有很好的固化效果,研究所得各影响因素的变化规律可为固化和修复重金属污染的电镀场地提供理论支持。
Abstract:In order to solve the problem of heavy metal pollution at electroplating sites in Ningbo, toxic characteristic leaching procedure, unconfined compressive strength test, long-term stability test under dynamic load and scanning electron microscope test of chromium-contaminated soil were carried out by using self-formulated curing agent. On this basis, the change patterns of the mechanical properties and leaching characteristics of the cured soil with the maintenance age, curing agent dosing, curing agent ratio and heavy metal contamination level are analyzed. The results show that the curing rate of chromium-contaminated soil with self-formulated curing agents is more than 85%, and curing rate increases with the amount of curing agent, decreases with the concentration of chromium, and increases with the age of maintenance and then decreases. The curing rate and unconfined compressive strength of the cured soil after 28, 90 d curing compared with those before the application of dynamic load show a small decrease, but the influence pattern of each factor remained the same. The self-formulated curing agents have a good curing effect on chromium. This research may provide theoretical support for curing and remediation of contaminated electroplating sites based on the analysis of the variation pattern of each factor variable.
-
表 1 试验土的基本物理力学指标
Table 1. Physical and mechanical indexes of test soil
天然含水率/% 液限
/%塑限
/%塑性指数 颗粒比重 压缩指数 回弹指数 41.1 44.5 23 21.5 2.76 0.41 0.05 表 2 铬污染土固化设计配比
Table 2. Experimental program of solidification of chromium contaminated soil
编号 固化剂各组分占比/% 水泥 石灰 硅酸钠 膨润土 沸石粉 CB1 60 20 10 5 5 CB2 60 20 15 5 0 CB3 60 15 20 0 5 表 3 动荷载试验方案
Table 3. Dynamic load test scheme
编号 围压/kPa 龄期/d 温度/°C 试验描述 1 50 28 25 常规固结不排水动三轴试验:
动荷载施加20 kPa(振动3600次)2 50 90 注:试验采用正弦波,振动模式采用单向纯压振动;本试验振动频率取1 Hz;振动5000~10000次试样会发生破坏,强度大大下降,不具有比较性,故选择振动3600次。 表 4 钝化后天然污染土重金属总量
Table 4. Heavy metal content in naturally polluted soil
样品 重金属总量/(mg·kg−1) 天然污染土 铬 铜 铅 锌 镉 镍 582 92 102 641 0.38 85 表 5 天然污染土TCLP试验结果
Table 5. TCLP results of natural contaminated soil
元素 固化前铬浓度
/(mg·kg−1)固化后铬浓度/(mg·kg−1) 固化率/% 28 d 90 d 28 d 90 d 铬 582 562 520 96.6 89.3 铜 92 88 80 95.7 87.0 铅 102 93 88 91.2 86.3 锌 641 600 560 93.6 87.4 镉 0.38 0.35 0.33 92.1 86.8 镍 85 80 75 94.1 88.2 -
[1] 尚会来, 张雷, 张静蓉. 电镀废水处理技术展望[J]. 给水排水,2012,48(增刊 1):260 − 263. [SHANG Huilai, ZHANG Lei, ZHANG Jingrong. Prospect of electroplating wastewater treatment technology[J]. Water & Wastewater Engineering,2012,48(Sup 1):260 − 263. (in Chinese)
SHANG Huilai, ZHANG Lei, ZHANG Jingrong. Prospect of electroplating wastewater treatment technology [J]. Water & Wastewater Engineering, 2012, 48(Sup 1): 260-263. (in Chinese)
[2] YU Y, WANG H, HU J H. Co-treatment of electroplating sludge, copper slag, and spent cathode carbon for recovering and solidifying heavy metals[J]. Journal of Hazardous Materials,2021,417:126020. doi: 10.1016/j.jhazmat.2021.126020
[3] 杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学,2011,32(1):116 − 124. [DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics,2011,32(1):116 − 124. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.01.019
DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.01.019
[4] 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10 − 11
The Report on the national general survey of soil contamination[J]. China Environmental Protection Industry, 2014(5): 10 − 11. (in Chinese)
[5] 李嘉蕊. 基于土壤-作物-人体系统的耕地重金属污染评价和健康风险评估[D]. 杭州: 浙江大学, 2019
LI Jiarui. Heavy metal pollution assessment and health risk assessment of cultivated land based on soil-crop-human system[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract)
[6] 张显军, 胡悦, 朱超. 土壤重金属污染治理的化学固化研究进展[J]. 资源节约与环保,2021(5):21 − 22. [ZHANG Xianjun, HU Yue, ZHU Chao. Research progress in chemical solidification of soil heavy metal pollution control[J]. Resources Economization & Environmental Protection,2021(5):21 − 22. (in Chinese) doi: 10.3969/j.issn.1673-2251.2021.05.020
ZHANG Xianjun, HU Yue, ZHU Chao. Research progress in chemical solidification of soil heavy metal pollution control [J]. Resources Economization & Environmental Protection, 2021(5): 21-22. (in Chinese) doi: 10.3969/j.issn.1673-2251.2021.05.020
[7] 李相国, 何超, 吕阳, 等. 铝酸三钙(C3A)稳定/固化重金属Cr[J]. 武汉理工大学学报,2013,35(4):1 − 5. [LI Xiangguo, HE Chao, LV Yang, et al. Stabilization/solidification of heavy metal Cr using tricalcium aluminate (C3A)[J]. Journal of Wuhan University of Technology,2013,35(4):1 − 5. (in Chinese with English abstract) doi: 10.3963/j.issn.1671-4431.2013.04.001
LI Xiangguo, HE Chao, LV Yang, et al. Stabilization/solidification of heavy metal Cr using tricalcium aluminate(C3A)[J]. Journal of Wuhan University of Technology, 2013, 35(4): 1-5. (in Chinese with English abstract) doi: 10.3963/j.issn.1671-4431.2013.04.001
[8] 张蕊. 六价铬在土壤中迁移转化影响因素研究及风险评价[D]. 长春: 吉林大学, 2013
ZHANG Rui. Influence factors of migration and transformation characters of Cr(Ⅵ) in soil and risk assessment[D]. Changchun: Jilin University, 2013. (in Chinese with English abstract)
[9] 杨瑞枝, 连海波, 李晓军, 等. 固化/稳定化重金属污染土力学及浸出特性试验研究[J]. 科学技术与工程,2020,20(16):6672 − 6677. [YANG Ruizhi, LIAN Haibo, LI Xiaojun, et al. Experimental study on mechanical properties and leaching characteristics of solidification/stabilization heavy metal contaminated soil[J]. Science Technology and Engineering,2020,20(16):6672 − 6677. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.16.056
YANG Ruizhi, LIAN Haibo, LI Xiaojun, et al. Experimental study on mechanical properties and leaching characteristics of solidification/stabilization heavy metal contaminated soil[J]. Science Technology and Engineering, 2020, 20(16): 6672-6677. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.16.056
[10] 王菲, 徐汪祺. 固化/稳定化和软土加固污染土的强度和浸出特性研究[J]. 岩土工程学报,2020,42(10):1955 − 1961. [WANG Fei, XU Wangqi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering,2020,42(10):1955 − 1961. (in Chinese with English abstract)
WANG Fei, XU Wangqi. Strength and leaching performances of stabilized/solidified(S/S) and ground improved(GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. (in Chinese with English abstract)
[11] 刘锋, 王琪, 黄启飞, 等. 固体废物浸出毒性浸出方法标准研究[J]. 环境科学研究,2008,21(6):9 − 15. [LIU Feng, WANG Qi, HUANG Qifei, et al. Study on the standard methods of leaching toxicity of solid waste[J]. Research of Environmental Sciences,2008,21(6):9 − 15. (in Chinese with English abstract)
LIU Feng, WANG Qi, HUANG Qifei, et al. Study on the standard methods of leaching toxicity of solid waste[J]. Research of Environmental Sciences, 2008, 21(6): 9-15. (in Chinese with English abstract)
[12] 孙叶芳, 谢正苗, 徐建明, 等. TCLP法评价矿区土壤重金属的生态环境风险[J]. 环境科学,2005,26(3):152 − 156. [SUN Yefang, XIE Zhengmiao, XU Jianming, et al. Assessment of toxicity of heavy metal contaminated soils by toxicity characteristic leaching procedure[J]. Environmental Science,2005,26(3):152 − 156. (in Chinese with English abstract) doi: 10.3321/j.issn:0250-3301.2005.03.031
SUN Yefang, XIE Zhengmiao, XU Jianming, et al. Assessment of toxicity of heavy metal contaminated soils by toxicity characteristic leaching procedure[J]. Environmental Science, 2005, 26(3): 152-156. (in Chinese with English abstract) doi: 10.3321/j.issn:0250-3301.2005.03.031
[13] 刘恒凤, 张吉雄, 周楠, 等. 矸石基胶结充填材料重金属浸出及其固化机制[J]. 中国矿业大学学报,2021,50(3):523 − 531. [LIU Hengfeng, ZHANG Jixiong, ZHOU Nan, et al. Study of the leaching and solidification mechanism of heavy metals from gangue-based cemented paste backfilling materials[J]. Journal of China University of Mining & Technology,2021,50(3):523 − 531. (in Chinese with English abstract)
LIU Hengfeng, ZHANG Jixiong, ZHOU Nan, et al. Study of the leaching and solidification mechanism of heavy metals from gangue-based cemented paste backfilling materials[J]. Journal of China University of Mining & Technology, 2021, 50(3): 523-531. (in Chinese with English abstract)
[14] SONG F Y, GU L, ZHU N W, et al. Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders[J]. Chemosphere,2013,92(4):344 − 350. doi: 10.1016/j.chemosphere.2013.01.022
[15] 朱晶晶. 基于磷矿粉的固化剂稳定锌铅污染黏土的环境安全性及路用性能研究[D]. 江苏: 东南大学, 2014
Zhu Jingjing. Environmental safety and road performance of phosphate rock-based binder stabilized/solidified Zn and Pb contamination soil[D]. Jiangsu: Southeast University, 2014. (in Chinese with English abstract)
[16] 刘干斌, 范思婷, 叶俊能, 等. 温控动三轴试验装置的研制及应用[J]. 岩石力学与工程学报,2015,34(7):1345 − 1352. [LIU Ganbin, FAN Siting, YE Junneng, et al. Development and application of a temperaturecontrolled dynamic triaxial test system[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(7):1345 − 1352. (in Chinese with English abstract)
LIU Ganbin, FAN Siting, YE Junneng, et al. Development and application of a temperaturecontrolled dynamic triaxial test system[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1345-1352. (in Chinese with English abstract)
[17] 中国工程建设标准化协会. 道路固化土应用技术规程: T/CECS 737—2020[S]. 北京: 中国计划出版社, 2020
China Engineering Construction Standardization Association. Technical specification for application of road solidified soil: T/CECS 737—2020[S]. Beijing: China Planning Press, 2020. (in Chinese)