考虑孔隙水微观赋存形态的非饱和粉土有效应力方程及其验证

曾立峰, 邵龙潭, 牛庚, 郭晓霞. 考虑孔隙水微观赋存形态的非饱和粉土有效应力方程及其验证[J]. 水文地质工程地质, 2022, 49(4): 37-46. doi: 10.16030/j.cnki.issn.1000-3665.202110023
引用本文: 曾立峰, 邵龙潭, 牛庚, 郭晓霞. 考虑孔隙水微观赋存形态的非饱和粉土有效应力方程及其验证[J]. 水文地质工程地质, 2022, 49(4): 37-46. doi: 10.16030/j.cnki.issn.1000-3665.202110023
ZENG Lifeng, SHAO Longtan, NIU Geng, GUO Xiaoxia. An effective stress equation for unsaturated silt considering the microstructure of pore water and its verification[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 37-46. doi: 10.16030/j.cnki.issn.1000-3665.202110023
Citation: ZENG Lifeng, SHAO Longtan, NIU Geng, GUO Xiaoxia. An effective stress equation for unsaturated silt considering the microstructure of pore water and its verification[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 37-46. doi: 10.16030/j.cnki.issn.1000-3665.202110023

考虑孔隙水微观赋存形态的非饱和粉土有效应力方程及其验证

  • 基金项目: 国家自然科学基金面上项目(52079018;51479023)
详细信息
    作者简介: 曾立峰(1986-),男,博士,主要从事非饱和土力学方面的研究工作。E-mail: zenglifeng34@163.com
    通讯作者: 邵龙潭(1963-),男,博士研究生,教授,博士生导师,主要从事土和孔隙介质力学基本理论研究、土工结构稳定分析、土工试验测试技术与仪器研发等方面的教学和科研。E-mail: shaolt@dlut.edu.cn
  • 中图分类号: P642.11+6

An effective stress equation for unsaturated silt considering the microstructure of pore water and its verification

More Information
  • 有效应力参数的合理确定是非饱和土有效应力研究的重要内容。然而,现有的有效应力参数未能较好地考虑孔隙水的微观赋存形态对有效应力的影响。为此,分析了孔隙水的微观赋存形态,明确了孔隙水可分为收缩膜、吸附水和毛细水,建立了非饱和粉土的扩展三相孔隙介质模型,即孔隙气、毛细水和广义土骨架。基于该模型,采用分相平衡分析法,推导了非饱和粉土的有效应力方程,该方程通过采用毛细水有效饱和度合理地考虑了毛细水对有效应力的影响。依据推导的有效应力方程,提出了非饱和粉土的抗剪强度公式。采用5种不同围压下重塑非饱和粉质黏土试验数据验证了提出的公式。结果表明:与现有的抗剪强度公式相比,本次提出的公式更好地预测了重塑非饱和粉质黏土的抗剪强度随基质吸力的变化规律。因此,运用提出的抗剪强度公式评价非饱和土边坡稳定性、地基承载力和挡土墙稳定性将会取得更好的效果。

  • 加载中
  • 图 1  非饱和粉土RVE中孔隙水的微观赋存形态

    Figure 1. 

    图 2  非饱和粉土的扩展三相孔隙介质模型

    Figure 2. 

    图 3  非饱和粉土的扩展三相孔隙介质模型的体积—饱和度关系

    Figure 3. 

    图 4  非饱和土整体及各分相的微元体的受力示意

    Figure 4. 

    图 5  两种SWRC模型的拟合结果

    Figure 5. 

    图 6  不同净围压下重塑非饱和粉质黏土的3种抗剪强度公式的预测结果

    Figure 6. 

  • [1]

    邵龙潭, 郭晓霞. 有效应力新解[M]. 北京: 中国水利水电出版社, 2014

    SHAO Longtan, GUO Xiaoxia. New interpretation of effective stress [M]. Beijing: China Water & Power Press, 2014. (in Chinese)

    [2]

    陈嘉伟, 高游, 付俊杰, 等. 不同类型黏土的强度特性及其预测[J]. 水文地质工程地质,2020,47(3):101 − 106. [CHEN Jiawei, GAO You, FU Junjie, et al. Strength of different clayey soils and its prediction[J]. Hydrogeology & Engineering Geology,2020,47(3):101 − 106. (in Chinese with English abstract)

    CHEN Jiawei, GAO You, FU Junjie, et al. Strength of different clayey soils and its prediction [J]. Hydrogeology & Engineering Geology, 2020, 47(3): 101-106. (in Chinese with English abstract)

    [3]

    邵龙潭, 覃亚龙, 郭晓霞, 等. 非饱和土有效应力公式验证[J]. 地下空间与工程学报,2018,14(6):1476 − 1483. [SHAO Longtan, QIN Yalong, GUO Xiaoxia, et al. The validation of the effective stress principle of unsaturated soils[J]. Chinese Journal of Underground Space and Engineering,2018,14(6):1476 − 1483. (in Chinese with English abstract)

    SHAO Longtan, QIN Yalong, GUO Xiaoxia, et al. The validation of the effective stress principle of unsaturated soils [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(6): 1476-1483. (in Chinese with English abstract)

    [4]

    盛岱超, 杨超. 关于非饱和土本构研究的几个基本规律的探讨[J]. 岩土工程学报,2012,34(3):438 − 456. [SHENG Daichao, YANG Chao. Discussion of fundamental principles in unsaturated soil mechanics[J]. Chinese Journal of Geotechnical Engineering,2012,34(3):438 − 456. (in Chinese with English abstract)

    SHENG Daichao, YANG Chao. Discussion of fundamental principles in unsaturated soil mechanics [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 438-456. (in Chinese with English abstract)

    [5]

    韩博文, 蔡国庆, 李舰, 等. 考虑颗粒黏结效应的非饱和土水–力耦合边界面模型[J]. 岩土工程学报,2020,42(11):2059 − 2068. [HAN Bowen, CAI Guoqing, LI Jian, et al. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering,2020,42(11):2059 − 2068. (in Chinese with English abstract)

    HAN Bowen, CAI Guoqing, LI Jian, et al. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. (in Chinese with English abstract)

    [6]

    饶鸿, 王金淑, 赵志明, 等. 基于有限元软件自定义本构模型的膨胀土边坡降雨入渗分析[J]. 水文地质工程地质,2021,48(1):154 − 162. [RAO Hong, WANG Jinshu, ZHAO Zhiming, et al. An analysis of rainfall infiltration of expansive soil slope based on the finite element software custom constitutive model[J]. Hydrogeology & Engineering Geology,2021,48(1):154 − 162. (in Chinese with English abstract)

    RAO Hong, WANG Jinshu, ZHAO Zhiming, et al. An analysis of rainfall infiltration of expansive soil slope based on the finite element software custom constitutive model [J]. Hydrogeology & Engineering Geology, 2021, 48(1): 154-162. (in Chinese with English abstract)

    [7]

    徐永福. 膨胀土地基承载力研究[J]. 岩石力学与工程学报,2000,19(3):387 − 390. [XU Yongfu. Study on bearing capacity of expansive soil basement[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(3):387 − 390. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2000.03.030

    XU Yongfu. Study on bearing capacity of expansive soil basement [J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 387-390. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2000.03.030

    [8]

    汪丁建, 童龙云, 邱岳峰. 降雨入渗条件下非饱和土朗肯土压力分析[J]. 岩土力学,2013,34(11):3192 − 3196. [WANG Dingjian, TONG Longyun, QIU Yuefeng. Rankine's earth pressure analysis of unsaturated soil under condition of rainfall infiltration[J]. Rock and Soil Mechanics,2013,34(11):3192 − 3196. (in Chinese with English abstract)

    WANG Dingjian, TONG Longyun, QIU Yuefeng. Rankine's earth pressure analysis of unsaturated soil under condition of rainfall infiltration [J]. Rock and Soil Mechanics, 2013, 34(11): 3192-3196. (in Chinese with English abstract)

    [9]

    BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad,1959,106(39):859 − 863.

    [10]

    ÖBERG A L, SÄLLFORS G. Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve[J]. Geotechnical Testing Journal,1997,20(1):40 − 48. doi: 10.1520/GTJ11419J

    [11]

    LU N, LIKOS W J. Suction stress characteristic curve for unsaturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(2):131 − 142. doi: 10.1061/(ASCE)1090-0241(2006)132:2(131)

    [12]

    VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal,1996,33(3):379 − 392. doi: 10.1139/t96-060

    [13]

    ALONSO E E, PEREIRA J M, VAUNAT J, et al. A microstructurally based effective stress for unsaturated soils[J]. Géotechnique,2010,60(12):913 − 925.

    [14]

    ZHOU A, HUANG R, SHENG D. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal,2016,53(6):974 − 987. doi: 10.1139/cgj-2015-0322

    [15]

    MITCHELL J K, SOGA K. Fundamentals of soil behavior [M]. 3th ed. Hoboken: John Wiley & Sons Inc, 2005.

    [16]

    WANG J P, LAMBERT P, DE KOCK T, et al. Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomography[J]. Acta Geotechnica,2019,14(5):1545 − 1559. doi: 10.1007/s11440-019-00765-2

    [17]

    LOUREN O S D N, GALLIPOLI D, AUGARDE C E, et al. Formation and evolution of water menisci in unsaturated granular media[J]. Géotechnique,2012,62(3):193 − 199.

    [18]

    FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils [M]. New York: John Wiley & Sons Inc, 1993.

    [19]

    COSTANZA-ROBINSON M S, BRUSSEAU M L. Air-water interfacial areas in unsaturated soils: Evaluation of interfacial domains[J]. Water Resources Research,2002,38(10):13 − 1.

    [20]

    LU N, LIKOS W J. Unsaturated soils mechanics [M]. New Jersey: John Wiley & Sons Inc, 2004.

    [21]

    LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering,2016,142(10):04016051. doi: 10.1061/(ASCE)GT.1943-5606.0001524

    [22]

    TOLL D G, ALI RAHMAN Z. Critical state shear strength of an unsaturated artificially cemented sand[J]. Géotechnique,2017,67(3):208 − 215.

    [23]

    DHOPATKAR N, DEFANTE A P, DHINOJWALA A. Ice-like water supports hydration forces and eases sliding friction[J]. Science Advances,2016,2(8):e1600763. doi: 10.1126/sciadv.1600763

    [24]

    JACINTO A C, VILLAR M V, LEDESMA A. Influence of water density on the water-retention curve of expansive clays[J]. Géotechnique,2012,62(8):657 − 667.

    [25]

    GHEZZEHEI T A, OR D. Rheological properties of wet soils and clays under steady and oscillatory stresses[J]. Soil Science Society of America Journal,2001,65(3):624 − 637. doi: 10.2136/sssaj2001.653624x

    [26]

    BAYUK I O, AMMERMAN M, CHESNOKOV E M. Upscaling of elastic properties of anisotropic sedimentary rocks[J]. Geophysical Journal International,2008,172(2):842 − 860. doi: 10.1111/j.1365-246X.2007.03645.x

    [27]

    GAO Y, SUN D A, ZHOU A, et al. Predicting shear strength of unsaturated soils over wide suction range[J]. International Journal of Geomechanics,2020,20(2):04019175. doi: 10.1061/(ASCE)GM.1943-5622.0001555

    [28]

    SHENG D, ZHOU A, FREDLUND D G. Shear strength criteria for unsaturated soils[J]. Geotechnical and Geological Engineering,2011,29(2):145 − 159. doi: 10.1007/s10706-009-9276-x

    [29]

    CUNNINGHAM M R, RIDLEY A M, DINEEN K, et al. The mechanical behaviour of a reconstituted unsaturated silty clay[J]. Géotechnique,2003,53(2):183 − 194.

    [30]

    CAMPBELL G S, SHIOZAWA S. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data [C]//VAN GENUCHTEN M T, LEIJ R J, LUND L J. International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. University of California, Riverside. 1992: 317 − 328.

    [31]

    LEBEAU M, KONRAD J-M. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,2010,46(12):W12554.

  • 加载中

(6)

计量
  • 文章访问数:  1283
  • PDF下载数:  68
  • 施引文献:  0
出版历程
收稿日期:  2021-10-13
修回日期:  2021-11-20
刊出日期:  2022-07-25

目录