基于随机森林回归分析的岩体结构面粗糙度研究

李文斌, 冯文凯, 胡云鹏, 周永健, 陈凯, 刘云. 基于随机森林回归分析的岩体结构面粗糙度研究[J]. 水文地质工程地质, 2023, 50(1): 87-93. doi: 10.16030/j.cnki.issn.1000-3665.202110048
引用本文: 李文斌, 冯文凯, 胡云鹏, 周永健, 陈凯, 刘云. 基于随机森林回归分析的岩体结构面粗糙度研究[J]. 水文地质工程地质, 2023, 50(1): 87-93. doi: 10.16030/j.cnki.issn.1000-3665.202110048
LI Wenbin, FENG Wenkai, HU Yunpeng, ZHOU Yongjian, CHEN Kai, LIU Yun. Roughness coefficient of rock discontinuities based on random forest regression analyses[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 87-93. doi: 10.16030/j.cnki.issn.1000-3665.202110048
Citation: LI Wenbin, FENG Wenkai, HU Yunpeng, ZHOU Yongjian, CHEN Kai, LIU Yun. Roughness coefficient of rock discontinuities based on random forest regression analyses[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 87-93. doi: 10.16030/j.cnki.issn.1000-3665.202110048

基于随机森林回归分析的岩体结构面粗糙度研究

  • 基金项目: 国家自然科学基金项目(41977252);地质灾害防治与地质环境保护国家重点实验室自主探索课题(SKLGP2020Z001);新华水力发电有限公司科研项目(XHWY-2020-DL-KY01)
详细信息
    作者简介: 李文斌(1999-),男,硕士研究生,主要从事工程地质与地质灾害研究。E-mail:1147309562@qq.com
    通讯作者: 冯文凯(1974-),男,博士,教授,博士生导师,主要从事区域与岩体稳定性评价与地质灾害防治研究。E-mail:fengwenkai@cdut.cn
  • 中图分类号: P642.2

Roughness coefficient of rock discontinuities based on random forest regression analyses

More Information
  • 岩体结构面粗糙度系数是快速估算结构面峰值抗剪强度的重要参数。但是结构面轮廓曲线复杂,单一统计参数无法量化表征粗糙度。为解决这一问题,收集了112条结构面轮廓曲线起伏角、起伏度、迹线长度3方面的8项统计参数,利用随机森林回归模型交叉验证的方法评估统计参数的重要性。结果表明:最大起伏度、起伏高度标准偏差、平均起伏角、起伏角标准差、平均相对起伏度及粗糙度剖面指数等6项统计参数重要性占比达到93.2%,且回归拟合系数趋于平稳,基于重要性评估结果建立最优超参数决策树数目(ntree)为400、参与节点分割的数目(mtry)为2的随机森林回归模型,模型预测结果拟合优度高达98.1%。与基于坡度均方根、结构函数及粗糙度剖面指数等传统线性回归结果对比,随机森林回归模型结果精度更高,误差更小,拟合优度提高6%以上,表明随机森林回归模型更适用于结构面粗糙度反演。

  • 加载中
  • 图 1  不同特征结构面轮廓曲线

    Figure 1. 

    图 2  样本轮廓曲线JRC

    Figure 2. 

    图 3  归一化后统计参数分布图

    Figure 3. 

    图 4  不同数量特征变量对拟合系数的影响

    Figure 4. 

    图 5  不同ntree时值时拟合系数变化

    Figure 5. 

    图 6  随机森林模型预测结果

    Figure 6. 

    图 7  各模型预测结果

    Figure 7. 

    表 1  结构面粗糙度统计参数重要性评分

    Table 1.  The importance score of the discontinuity roughness statistical parameters

    变量RmaxSDhiaveSDiRaveRpSFZ2
    重要性评分0.3230.2700.1590.0690.0660.0440.0410.027
    下载: 导出CSV

    表 2  各模型预测精度

    Table 2.  Predictive accuracy for each mode

    模型精度RFSFRPZ2
    R2/%98.192.191.791.3
    MSE0.2193.3636.36613.974
    RMSE0.5021.2271.6231.781
    下载: 导出CSV
  • [1]

    BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology,1973,7(4):287 − 332. doi: 10.1016/0013-7952(73)90013-6

    [2]

    BARTON N,CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics,1977,10(1/2):1 − 54.

    [3]

    BARTON N. Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15(6):319-368.

    [4]

    邓华锋,熊雨,肖瑶,等. 基于单试件法的节理岩体抗剪强度参数分析[J]. 岩土工程学报,2020,42(8):1509 − 1515. [DENG Huafeng,XIONG Yu,XIAO Yao,et al. Shear strength parameters of jointed rock mass based on single test sample method[J]. Chinese Journal of Geotechnical Engineering,2020,42(8):1509 − 1515. (in Chinese with English abstract)

    [5]

    TSE R,CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1979,16(5):303 − 307.

    [6]

    YANG Z Y,LO S C,DI C C. Reassessing the joint roughness coefficient (JRC) estimation using Z_2[J]. Rock Mechanics and Rock Engineering,2001,34(3):243 − 251. doi: 10.1007/s006030170012

    [7]

    YU Xianbin,VAYSSADE B. Joint profiles and their roughness parameters[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(4):333 − 336.

    [8]

    孙辅庭,佘成学,万利台. Barton标准剖面JRC与独立于离散间距的统计参数关系研究[J]. 岩石力学与工程学报,2014,33(增刊 2):3539 − 3544. [SUN Futing,SHE Chengxue,WAN Litai. Research on relationship between JRC of Barton’s standard profiles and statistic parameters independent of sampling interval[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup 2):3539 − 3544. (in Chinese with English abstract)

    [9]

    ZHANG Guangcheng,KARAKUS M,TANG Huiming,et al. A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2014,72:191 − 198. doi: 10.1016/j.ijrmms.2014.09.009

    [10]

    吉峰. 硬性结构面粗糙度系数量化确定及其工程应用[J]. 水文地质工程地质,2010,37(3):84 − 86,101. [JI Feng. Quantization research and project application of roughness coefficient of a rigid structure plane[J]. Hydrogeology & Engineering Geology,2010,37(3):84 − 86,101. (in Chinese)

    [11]

    李化,黄润秋. 岩石结构面粗糙度系数JRC定量确定方法研究[J]. 岩石力学与工程学报,2014,33(增刊 2):3489 − 3496. [LI Hua,HUANG Runqiu. Method of quantitative determination of joint roughness coefficient[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup 2):3489 − 3496. (in Chinese with English abstract)

    [12]

    徐光黎. 岩石结构面几何特征的分形与分维[J]. 水文地质工程地质,1993,20(2):20 − 22. [XU Guangli. Fractal analysis for rock mass joint geometry[J]. Hydrogeology and Engineering Geology,1993,20(2):20 − 22. (in Chinese with English abstract)

    [13]

    谢和平. 岩石节理的分形描述[J]. 岩土工程学报,1995,17(1):18 − 23. [XIE Heping. Fractal description of rock joints[J]. Chinese Journal of Geotechnical Engineering,1995,17(1):18 − 23. (in Chinese)

    [14]

    杜时贵,陈禹,樊良本. JRC修正直边法的数学表达[J]. 工程地质学报,1996,4(2):36 − 43. [DU Shigui,CHEN Yu,FAN Liangben. Mathematical expression of JRC modified straight edge[J]. Journal of Engineering Geology,1996,4(2):36 − 43. (in Chinese)

    [15]

    BARTON, BANDIS S. Effects of block size on the shear behavior of jointed rock[C]// The 23rd US Symposium on Rock Mechanics. 1982: 739-760.

    [16]

    胡越,罗东阳,花奎,等. 关于深度学习的综述与讨论[J]. 智能系统学报,2019,14(1):1 − 19. [HU Yue,LUO Dongyang,HUA Kui,et al. Overview on deep learning[J]. CAAI Transactions on Intelligent Systems,2019,14(1):1 − 19. (in Chinese with English abstract)

    [17]

    李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报,2013,50(4):1190 − 1197. [LI Xinhai. Using “random forest” for classification and regression[J]. Chinese Journal of Applied Entomology,2013,50(4):1190 − 1197. (in Chinese with English abstract)

    [18]

    BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5 − 32. doi: 10.1023/A:1010933404324

    [19]

    李扬,祁乐,聂佩芸. 大规模数据的随机森林算法[J]. 统计与信息论坛,2020,35(6):24 − 33. [LI Yang,QI Le,NIE Peiyun. A distributed random forest algorithm for massive data[J]. Statistics & Information Forum,2020,35(6):24 − 33. (in Chinese with English abstract)

    [20]

    刘新荣,邓志云,刘永权,等. 岩石节理峰前循环直剪试验颗粒流宏细观分析[J]. 煤炭学报,2019,44(7):2103 − 2115. [LIU Xinrong,DENG Zhiyun,LIU Yongquan,et al. Macroscopic and microscopic analysis of particle flow in pre-peak cyclic direct shear test of rock joint[J]. Journal of China Coal Society,2019,44(7):2103 − 2115. (in Chinese with English abstract)

    [21]

    黄曼,洪陈杰,杜时贵,等. 岩石结构面形貌分级方法及两级粗糙特性研究[J]. 岩石力学与工程学报,2020,39(6):1153 − 1164. [HUANG Man,HONG Chenjie,DU Shigui,et al. Study on morphological classification method and two-order roughness of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(6):1153 − 1164. (in Chinese with English abstract)

    [22]

    陈世江,赵自豪,王超. 基于修正线粗糙度法的岩石节理粗糙度估值[J]. 金属矿山,2012(6):22 − 25. [CHEN Shijiang,ZHAO Zihao,WANG Chao. Estimation of rock joint roughness based on modified line-roughness[J]. Metal Mine,2012(6):22 − 25. (in Chinese with English abstract)

    [23]

    LI Yanrong,ZHANG Yongbo. Quantitative estimation of joint roughness coefficient using statistical parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2015,77:27 − 35. doi: 10.1016/j.ijrmms.2015.03.016

  • 加载中

(7)

(2)

计量
  • 文章访问数:  1331
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2021-10-28
修回日期:  2021-12-06
录用日期:  2022-02-21
刊出日期:  2023-01-15

目录