不同应力路径下饱和重塑黄土的力学特性

赵丹旗, 付昱凯, 侯晓坤, 李同录, 李萍, 李燕, 张林. 不同应力路径下饱和重塑黄土的力学特性[J]. 水文地质工程地质, 2022, 49(6): 74-80. doi: 10.16030/j.cnki.issn.1000-3665.202201020
引用本文: 赵丹旗, 付昱凯, 侯晓坤, 李同录, 李萍, 李燕, 张林. 不同应力路径下饱和重塑黄土的力学特性[J]. 水文地质工程地质, 2022, 49(6): 74-80. doi: 10.16030/j.cnki.issn.1000-3665.202201020
ZHAO Danqi, FU Yukai, HOU Xiaokun, LI Tonglu, LI Ping, LI Yan, ZHANG Lin. Mechanical properties of saturated remolded loess under different stress paths[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 74-80. doi: 10.16030/j.cnki.issn.1000-3665.202201020
Citation: ZHAO Danqi, FU Yukai, HOU Xiaokun, LI Tonglu, LI Ping, LI Yan, ZHANG Lin. Mechanical properties of saturated remolded loess under different stress paths[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 74-80. doi: 10.16030/j.cnki.issn.1000-3665.202201020

不同应力路径下饱和重塑黄土的力学特性

  • 基金项目: 陕西省自然科学基础研究计划资助项目(2022JM-167);国家自然科学基金项目(42072311);国家自然科学基金重大项目(41790442)
详细信息
    作者简介: 赵丹旗(1998-),女,硕士研究生,主要从事黄土强度及边坡稳定性研究。E-mail:zdq@chd.edu.cn
    通讯作者: 付昱凯(1983-),男,博士,讲师,主要从事工程地质与地质灾害研究。E-mail:fw@chd.edu.cn
  • 中图分类号: TU411.7

Mechanical properties of saturated remolded loess under different stress paths

More Information
  • 土体的力学特性往往因应力状态和应力路径而异。为了探讨垂直加载和等剪路径下饱和土的力学特性,制备饱和重塑黄土试样,通过固结不排水(CU)和常剪应力排水剪(CSD)三轴试验,分别测定并绘制其应力-应变曲线、孔隙水压力变化曲线和应力路径曲线。试验结果表明,饱和重塑黄土在2种路径下有明显不同的变形特点:CU路径下的应力-应变曲线皆呈弱软化型,孔隙水压力先快速上升后逐渐趋于稳定;CSD路径下维持偏应力为一常量,施加孔隙水压力后的很长时间内试样变形很小,当孔隙水压力增大至试验围压的60%~75%时,试样迅速破坏。CSD路径无偏应力峰值,文中根据轴应变随平均有效应力变化曲线定义了等效峰值破坏线。通过对比发现,2种路径下饱和重塑黄土的有效峰值强度指标差异明显,而有效残余强度指标相近,表明有效残余强度指标是重塑黄土内在属性,受应力路径的影响不大。该研究结果可为实际工程选取正确的应力路径试验提供参考。

  • 加载中
  • 图 1  黄土试样粒径分布曲线

    Figure 1. 

    图 2  CU试验应力路径

    Figure 2. 

    图 3  应力q、孔压u与轴应变ɛa关系曲线

    Figure 3. 

    图 4  2种应力路径下土样都呈现鼓胀破坏

    Figure 4. 

    图 5  CSD试验应力路径与轴应变-平均有效应力曲线

    Figure 5. 

    图 6  孔压-轴应变曲线

    Figure 6. 

    图 7  2种应力路径的破坏线

    Figure 7. 

    表 1  试验方案

    Table 1.  Test schemes

    试验
    编号
    固结阶段剪切阶段
    固结方式有效固结
    应力/kPa
    偏压固结
    速率/(%·min−1
    应变速率/
    (%·min−1
    偏应力/
    kPa
    孔压控制
    增速/(kPa·min−1
    CU-1等压固结540.1
    CU-2等压固结1090.1
    CU-3等压固结1990.1
    CSD-1等压−偏压固结610.01200.20
    CSD-2等压−偏压固结1100.01400.20
    CSD-3等压−偏压固结2100.01600.20
    下载: 导出CSV

    表 2  CiDi点的孔隙水压力

    Table 2.  Pore water pressure at Ci and Di

    试验编号Cii=1,2,3)Dii=1,2,3)
    u/kPa/%u/kPa/%
    CSD-132.052.545.474.4
    CSD-241.537.767.961.7
    CSD-3105.150.0147.170.0
    下载: 导出CSV

    表 3  2种应力路径下饱和重塑黄土的有效抗剪强度指标

    Table 3.  Effective shear strength indexes of the saturated remolded loess under two stress paths

    破坏线应力路径αaφ'/(°)c'/kPa
    峰值破坏线CU15.45.416.05.6
    CSD19.32.620.52.8
    残余破坏线CU24.04.626.45.1
    CSD25.12.827.93.2
    平均残余破坏线24.54.027.14.5
    下载: 导出CSV
  • [1]

    李广信,吕禾. 土强度试验的排水条件与强度指标的应用[J]. 工程勘察,2006,34(3):11 − 14. [LI Guangxin,LYU He. Drainage conditions for tests of soil strength and the application of strength indices[J]. Journal of Geotechnical Investigation & Surveying,2006,34(3):11 − 14. (in Chinese with English abstract)

    [2]

    陈存礼,郭娟,杨鹏. 应力路径对固结排水条件下饱和原状黄土变形与强度特性的影响[J]. 水利学报,2008,39(6):703 − 708. [CHEN Cunli,GUO Juan,YANG Peng. Influence of stress path on deformation and strength characteristics of saturated intact loess under drainage condition[J]. Journal of Hydraulic Engineering,2008,39(6):703 − 708. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2008.06.010

    [3]

    刘恩龙,沈珠江. 不同应力路径下结构性土的力学特性[J]. 岩石力学与工程学报,2006,25(10):2058 − 2064. [LIU Enlong,SHEN Zhujiang. Mechanical behavior of structured soils under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(10):2058 − 2064. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.10.017

    [4]

    曾玲玲,陈晓平. 软土在不同应力路径下的力学特性分析[J]. 岩土力学,2009,30(5):1264 − 1270. [ZENG Lingling,CHEN Xiaoping. Analysis of mechanical characteristics of soft soil under different stress paths[J]. Rock and Soil Mechanics,2009,30(5):1264 − 1270. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.05.012

    [5]

    高彬,陈筠,杨恒,等. 红黏土在不同应力路径下的力学特性试验研究[J]. 地下空间与工程学报,2018,14(5):1202 − 1212. [GAO Bin,CHEN Jun,YANG Heng,et al. Experimental study on mechanical properties of red clay under different stress paths[J]. Chinese Journal of Underground Space and Engineering,2018,14(5):1202 − 1212. (in Chinese with English abstract)

    [6]

    郅彬,王番,胡梦玲,等. 不同应力路径下饱和黄土应力应变及孔压特性分析[J]. 科学技术与工程,2016,16(22):244 − 248. [ZHI Bin,WANG Pan,HU Mengling,et al. The influence of different stress path on stress and strain relation and pore pressure characteristic of saturated loess[J]. Science Technology and Engineering,2016,16(22):244 − 248. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2016.22.044

    [7]

    刘祖德,陆士强,杨天林,等. 应力路径对填土应力应变关系的影响及其应用[J]. 岩土工程学报,1982,4(4):45 − 55. [LIU Zude,LU Shiqiang,YANG Tianlin,et al. The influence of stress path on the stress-strain behavior of earthfills and its application[J]. Chinese Journal of Geotechnical Engineering,1982,4(4):45 − 55. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1982.04.004

    [8]

    孙岳崧,濮家骝,李广信. 不同应力路径对砂土应力-应变关系影响[J]. 岩土工程学报,1987,9(6):78 − 88. [SUN Yuesong,PU Jialiu,LI Guangxin. The influence of different stress path on the stress-strain relationships of sand[J]. Chinese Journal of Geotechnical Engineering,1987,9(6):78 − 88. (in Chinese) doi: 10.3321/j.issn:1000-4548.1987.06.009

    [9]

    江美英,骆亚生,王瑞瑞,等. 应力路径对饱和黄土孔压的影响研究[J]. 地下空间与工程学报,2010,6(3):498 − 502. [JIANG Meiying,LUO Yasheng,WANG Ruirui,et al. Influence of stress path on the pore pressure of saturated loess[J]. Chinese Journal of Underground Space and Engineering,2010,6(3):498 − 502. (in Chinese with English abstract)

    [10]

    许成顺,文利明,杜修力,等. 不同应力路径条件下的砂土剪切特性试验研究[J]. 水利学报,2010,41(1):108 − 112. [XU Chengshun,WEN Liming,DU Xiuli,et al. Experimental study on shear behaviors of sand under different stress path[J]. Journal of Hydraulic Engineering,2010,41(1):108 − 112. (in Chinese with English abstract)

    [11]

    周飞,许强,巨袁臻,等. 黑方台黄土斜坡变形破坏机理研究[J]. 水文地质工程地质,2017,44(1):157 − 163. [ZHOU Fei,XU Qiang,JU Yuanzhen,et al. A study of the deformation and failure mechanism of the Heifangtai loess slope[J]. Hydrogeology & Engineering Geology,2017,44(1):157 − 163. (in Chinese with English abstract)

    [12]

    许强,魏勇,彭大雷,等. 泾阳南塬蒋刘4#滑坡特征及成因机制[J]. 水文地质工程地质,2018,45(1):123 − 130. [XU Qiang,WEI Yong,PENG Dalei,et al. Characteristics and failure mechanism of the Jiangliu 4# landslide in the southern tableland in Jingyang County[J]. Hydrogeology & Engineering Geology,2018,45(1):123 − 130. (in Chinese with English abstract)

    [13]

    BRAND E W. Some thoughts on rain-induced slope failure[C]//Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm: A ABalkema, 1981: 373 − 376.

    [14]

    戴福初,陈守义,李焯芬. 从土的应力应变特性探讨滑坡发生机理[J]. 岩土工程学报,2000,22(1):127 − 130. [DAI Fuchu,CHEN Shouyi,LI Zhuofen. Analysis of landslide initiative mechanism based on stress-strain behavior of soil[J]. Chinese Journal of Geotechnical Engineering,2000,22(1):127 − 130. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.01.023

    [15]

    CHU J,LEROUEIL S,LEONG W K. Unstable behaviour of sand and its implication for slope instability[J]. Canadian Geotechnical Journal,2003,40(5):873 − 885. doi: 10.1139/t03-039

    [16]

    赵春宏,戴福初. 深圳某填土滑坡破坏机理研究[J]. 中国地质灾害与防治学报,2007,18(2):1 − 8. [ZHAO Chunhong,DAI Fuchu. Study on failure mechanism of a fill slope in Shenzhen[J]. The Chinese Journal of Geological Hazard and Control,2007,18(2):1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2007.02.001

    [17]

    董全杨,蔡袁强,王军,等. 松散砂土不稳定性试验研究[J]. 岩石力学与工程学报,2014,33(3):623 − 630. [DONG Quanyang,CAI Yuanqiang,WANG Jun,et al. Experimental study of instability of loose sand[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(3):623 − 630. (in Chinese with English abstract)

    [18]

    徐张建,林在贯,张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报,2007,26(7):1297 − 1312. [XU Zhangjian,LIN Zaiguan,ZHANG Maosheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1297 − 1312. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.07.001

    [19]

    中华人民共和国建设部. 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008

    Ministry of Construction of the People’s Republic of China. Standard for engineering classification of soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)

    [20]

    中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [21]

    李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013

    LI Guangxin, ZHANG Bingyin, YU Yuzhen. Soil mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. (in Chinese)

  • 加载中

(7)

(3)

计量
  • 文章访问数:  999
  • PDF下载数:  117
  • 施引文献:  0
出版历程
收稿日期:  2022-01-12
修回日期:  2022-03-15
刊出日期:  2022-11-15

目录