水泥改良土的拉伸强度特性及其计算方法

魏洪山, 王伟志, 徐永福, 白宇帆, 严祯强, 王浩. 水泥改良土的拉伸强度特性及其计算方法[J]. 水文地质工程地质, 2022, 49(6): 81-89. doi: 10.16030/j.cnki.issn.1000-3665.202202025
引用本文: 魏洪山, 王伟志, 徐永福, 白宇帆, 严祯强, 王浩. 水泥改良土的拉伸强度特性及其计算方法[J]. 水文地质工程地质, 2022, 49(6): 81-89. doi: 10.16030/j.cnki.issn.1000-3665.202202025
WEI Hongshan, WANG Weizhi, XU Yongfu, BAI Yufan, YAN Zhenqiang, WANG Hao. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 81-89. doi: 10.16030/j.cnki.issn.1000-3665.202202025
Citation: WEI Hongshan, WANG Weizhi, XU Yongfu, BAI Yufan, YAN Zhenqiang, WANG Hao. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 81-89. doi: 10.16030/j.cnki.issn.1000-3665.202202025

水泥改良土的拉伸强度特性及其计算方法

  • 基金项目: 国家重点研发计划项目(2019YFC1509800);上海铁路局集团有限公司科研项目(2020150)
详细信息
    作者简介: 魏洪山(1977-),男,正高级工程师,主要从事铁路建设管理工作。E-mail:weihongshan@163.com
    通讯作者: 徐永福(1967-),男,博士,教授,博士生导师,主要从事非饱和土力学和特殊土地基处理科研与教学工作。 E-mail:yongfuxu@sjtu.edu.cn
  • 中图分类号: TU411.6

Tensile strength characteristics and calculation methods of the cement stabilized soil

More Information
  • 水泥改良土具有强度高、变形小、施工操作简单、质量控制容易和经济效益显著等优点,被广泛应用于路基填筑、基坑回填、边坡防护和地基换填。水泥土裂缝影响路基工程的正常运行,甚至可能危及铁路路基安全。因此,铁路路基设计需要对路基填土的抗拉强度有一定程度的了解,水泥改良土抗拉强度的确定具有重要意义。水泥改良土的抗裂性能是影响工程应用的重要因素,拉伸强度是衡量水泥土抗裂性能的关键指标。本文基于常规无侧限压缩仪自行设计了直接测量水泥改良土拉伸强度的单轴拉伸试验方法,系统地研究了水泥掺量(A)、龄期(t)、含水率(w)和干密度(ρd)对水泥改良土单轴拉伸强度(σt)的影响,水泥改良土的单轴拉伸强度随水泥掺量、龄期和干密度增加而增加,随含水率增加而减小,建立了水泥改良土的单轴拉伸强度与et/Aet是水泥改良土的孔隙比)之间的指数函数关系。结合水泥改良土的无侧限抗压强度和基质吸力的测试结果,建立了单轴拉伸强度与无侧限抗压强度和基质吸力之间的相关关系。

  • 加载中
  • 图 1  拉伸强度试验方法

    Figure 1. 

    图 2  直接拉伸试验的土样改进方法

    Figure 2. 

    图 3  钻渣试样

    Figure 3. 

    图 4  钻渣的颗分曲线

    Figure 4. 

    图 5  钻渣在塑性图上的位置

    Figure 5. 

    图 6  土样与顶、底座间的固定方法

    Figure 6. 

    图 7  水泥改良土的拉伸试验曲线

    Figure 7. 

    图 8  水泥改良土的拉伸破坏形式

    Figure 8. 

    图 9  水泥改良土的拉伸强度的影响因素

    Figure 9. 

    图 10  拉伸强度与抗压强度的相关关系

    Figure 10. 

    图 11  钻渣和水泥改良土的土-水特征曲线

    Figure 11. 

    图 12  水泥改良土拉伸强度与基质吸力的相关关系

    Figure 12. 

    图 13  水泥改良土拉伸强度与et/A的相关关系

    Figure 13. 

  • [1]

    杨滨,顾小安,黄寅春,等. 水泥土的强度特性[J]. 公路,2006,51(7):130 − 135. [YANG Bin,GU Xiaoan,HUANG Yinchun,et al. Strength characteristics of cement-stabilized soil[J]. Highway,2006,51(7):130 − 135. (in Chinese with English abstract) doi: 10.3969/j.issn.0451-0712.2006.07.033

    [2]

    邢皓枫,张好,李浩铭. 高含盐水泥土的力学特性及微观结构研究[J]. 水文地质工程地质,2021,48(3):102 − 109. [XING Haofeng,ZHANG Hao,LI Haoming. Mechanical characteristics and microstructure of salt-rich cement-soil[J]. Hydrogeology & Engineering Geology,2021,48(3):102 − 109. (in Chinese with English abstract)

    [3]

    王许诺,杨平,鲍俊安,等. 冻结水泥土无侧限抗压试验研究[J]. 水文地质工程地质,2013,40(3):79 − 84. [WANG Xu-nuo,YANG Ping,BAO Jun-an,et al. Test research on unconfined compressive strength of freezing cement soil[J]. Hydrogeology & Eng Geology,2013,40(3):79 − 84. (in Chinese with English abstract)

    [4]

    耿凯强,李晓丽. 单轴压缩下红色砒砂岩水泥土的能量演化机制研究[J]. 水文地质工程地质,2020,47(5):134 − 141. [GENG Kaiqiang,LI Xiaoli. Energy evolution mechanism of red Pisha-sandstone cement soil under uniaxial compression[J]. Hydrogeology & Engineering Geology,2020,47(5):134 − 141. (in Chinese with English abstract)

    [5]

    陈鑫,张泽,李东庆. 尺寸和加载速率对冻结水泥土单轴压缩影响[J]. 水文地质工程地质,2019,46(6):74 − 82. [CHEN Xin,ZHANG Ze,LI Dongqing. Effect of size and loading rate on the uniaxial compression characteristics of frozen cement soil[J]. Hydrogeology & Engineering Geology,2019,46(6):74 − 82. (in Chinese with English abstract)

    [6]

    朱俊高,梁彬,陈秀鸣,等. 击实土单轴抗拉强度试验研究[J]. 河海大学学报(自然科学版),2007,35(2):186 − 190. [ZHU Jungao,LIANG Bin,CHEN Xiuming,et al. Experimental study on unaxial tensile strength of compacted soils[J]. Journal of Hohai University (Natural Sciences),2007,35(2):186 − 190. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-1980.2007.02.015

    [7]

    CONSOLI N C,CRUZ R C,FLOSS M F,et al. Parameters controlling tensile and compressive strength of artificially cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(5):759 − 763. doi: 10.1061/(asce)gt.1943-5606.0000278

    [8]

    CONSOLI N C,DA FONSECA A V,CRUZ R C,et al. Voids/cement ratio controlling tensile strength of cement-treated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(11):1126 − 1131. doi: 10.1061/(asce)gt.1943-5606.0000524

    [9]

    VISWANADHAM B V S,JHA B K,PAWAR S N. Experimental study on flexural testing of compacted soil beams[J]. Journal of Materials in Civil Engineering,2010,22(5):460 − 468. doi: 10.1061/(asce)mt.1943-5533.0000045

    [10]

    凌道盛,徐泽龙,蔡武军,等. 压实黏土梁弯曲开裂性状试验研究[J]. 岩土工程学报,2015,37(7):1165 − 1172. [LING Daosheng,XU Zelong,CAI Wujun,et al. Experimental study on characteristics of bending cracks of compacted soil beams[J]. Chinese Journal of Geotechnical Engineering,2015,37(7):1165 − 1172. (in Chinese with English abstract) doi: 10.11779/CJGE201507001

    [11]

    郭飞,何昌荣,朱安龙,等. 黏性土抗拉强度的轴向压裂法试验研究[J]. 水电站设计,2005,21(2):66 − 68. [GUO Fei,HE Changrong,ZHU Anlong,et al. Experimental study on tensile strength of clay by axial fracturing[J]. Design of Hydroelectric Power Station,2005,21(2):66 − 68. (in Chinese) doi: 10.3969/j.issn.1003-9805.2005.02.018

    [12]

    刘正和,杨录胜,廉浩杰,等. 砂岩钻孔轴向预制裂缝定向压裂试验研究[J]. 煤炭学报,2019,44(7):2057 − 2065. [LIU Zhenghe,YANG Lusheng,LIAN Haojie,et al. Experimental study of directional fracturing in sandstones with prefabricated cracks in the axial direction of borehole[J]. Journal of China Coal Society,2019,44(7):2057 − 2065. (in Chinese with English abstract)

    [13]

    沈忠言,刘永智,彭万巍,等. 径向压裂法在冻土抗拉强度测定中的应用[J]. 冰川冻土,1994,16(3):224 − 231. [SHEN Zhongyan,LIU Yongzhi,PENG Wanwei,et al. Application of the radial—splitting method to determining tensile strength of frozen soil[J]. Journal of Glaciolgy and Geocryology,1994,16(3):224 − 231. (in Chinese with English abstract)

    [14]

    周鸿逵. 三轴拉伸试验中试样的断裂机理[J]. 岩土工程学报,1984,6(3):11 − 23. [ZHOU Hongkui. The mechanism of fracture of soil samples in triaxial tensile test[J]. Chinese Journal of Geotechnical Engineering,1984,6(3):11 − 23. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1984.03.002

    [15]

    刘俊新,陈忠富,徐伟芳. 压实粘性土三轴拉伸试验研究[J]. 浙江工业大学学报,2012,40(2):183 − 187. [LIU Junxin,CHEN Zhongfu,XU Weifang. Experimental research on triaxial extension of compacted clay[J]. Journal of Zhejiang University of Technology,2012,40(2):183 − 187. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4303.2012.02.015

    [16]

    DAVID SUITS L,SHEAHAN T C,NAHLAWI H,et al. A direct tensile strength testing method for unsaturated geomaterials[J]. Geotechnical Testing Journal,2004,27(4):11767. doi: 10.1520/gtj11767

    [17]

    TOLLENAAR R N,VAN PAASSEN L A,JOMMI C. Experimental evaluation of the effects of pull rate on the tensile behavior of a clay[J]. Applied Clay Science,2017,144:131 − 140. doi: 10.1016/j.clay.2017.04.026

    [18]

    TRABELSI H,ROMERO E,JAMEI M. Tensile strength during drying of remoulded and compacted clay:the role of fabric and water retention[J]. Applied Clay Science,2018,162:57 − 68. doi: 10.1016/j.clay.2018.05.032

    [19]

    BECKETT C T S,SMITH J C,CIANCIO D,et al. Tensile strengths of flocculated compacted unsaturated soils[J]. Géotechnique Letters,2015,5(4):254 − 260. doi: 10.1680/jgele.15.00087

    [20]

    DENIZ AKIN I,LIKOS W J. Brazilian tensile strength testing of compacted clay[J]. Geotechnical Testing Journal,2017,40(4):20160180. doi: 10.1520/gtj20160180

    [21]

    MASOUMI H,ROSHAN H,HEDAYAT A,et al. Scale-size dependency of intact rock under point-load and indirect tensile Brazilian testing[J]. International Journal of Geomechanics,2018,18(3):04018006. doi: 10.1061/(asce)gm.1943-5622.0001103

    [22]

    ASTM STP 740: Laboratory Shear Strength of Soil[S]. American Society for Testing and Materials, 1981: 130 − 144.

    [23]

    IBARRA S Y,MCKYES E,BROUGHTON R S. Measurement of tensile strength of unsaturated sandy loam soil[J]. Soil and Tillage Research,2005,81(1):15 − 23. doi: 10.1016/j.still.2004.04.002

    [24]

    LAKSHMIKANTHA M R,PRAT P C,LEDESMA A. Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal,2012,49(3):264 − 284. doi: 10.1139/t11-102

    [25]

    STIRLING R A,HUGHES P,DAVIE C T,et al. Tensile behaviour of unsaturated compacted clay soils—A direct assessment method[J]. Applied Clay Science,2015,112/113:123 − 133. doi: 10.1016/j.clay.2015.04.011

    [26]

    VARSEI M,MILLER G A,HASSANIKHAH A. Novel approach to measuring tensile strength of compacted clayey soil during desiccation[J]. International Journal of Geomechanics,2016,16(6):D4016011. doi: 10.1061/(asce)gm.1943-5622.0000705

    [27]

    TAMRAKAR S B, MITACHI T, TOYOSAWA Y, et al. Development of a new soil tensile strength test apparatus[C]//Geo-Frontiers Congress 2005. Austin, Texas, USA. Reston, VA, USA: American Society of Civil Engineers, 2005: 1 − 10. http://dx. doi.org/10.1061/ 40785(164)26.

    [28]

    NAMIKAWA T,KOSEKI J. Evaluation of tensile strength of cement-treated sand based on several types of laboratory tests[J]. Soils and Foundations,2007,47(4):657 − 674. doi: 10.3208/sandf.47.657

    [29]

    YIN P H,VANAPALLI S K. Model for predicting tensile strength of unsaturated cohesionless soils[J]. Canadian Geotechnical Journal,2018,55(9):1313 − 1333. doi: 10.1139/cgj-2017-0376

    [30]

    SALIMI K,CERATO A B,VAHEDIFARD F,et al. General model for the uniaxial tensile strength characteristic curve of unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2021,147(7):04021051. doi: 10.1061/(asce)gt.1943-5606.0002567

    [31]

    LORENZO G A,BERGADO D T. Fundamental parameters of cement-admixed clay—New approach[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(10):1042 − 1050. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1042)

  • 加载中

(13)

计量
  • 文章访问数:  1493
  • PDF下载数:  94
  • 施引文献:  0
出版历程
收稿日期:  2022-02-16
修回日期:  2022-03-25
刊出日期:  2022-11-15

目录