锦屏大理岩单轴压缩过程中的微结构演化

封陈晨, 李傲, 王志亮, 王浩然. 锦屏大理岩单轴压缩过程中的微结构演化[J]. 水文地质工程地质, 2022, 49(6): 90-96. doi: 10.16030/j.cnki.issn.1000-3665.202204023
引用本文: 封陈晨, 李傲, 王志亮, 王浩然. 锦屏大理岩单轴压缩过程中的微结构演化[J]. 水文地质工程地质, 2022, 49(6): 90-96. doi: 10.16030/j.cnki.issn.1000-3665.202204023
FENG Chenchen, LI Ao, WANG Zhiliang, WANG Haoran. A study of mineral compositions and micro-structure characteristics for the Jinping marble[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 90-96. doi: 10.16030/j.cnki.issn.1000-3665.202204023
Citation: FENG Chenchen, LI Ao, WANG Zhiliang, WANG Haoran. A study of mineral compositions and micro-structure characteristics for the Jinping marble[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 90-96. doi: 10.16030/j.cnki.issn.1000-3665.202204023

锦屏大理岩单轴压缩过程中的微结构演化

  • 基金项目: 国家自然科学基金雅砻江联合基金资助项目(U1965101);国家自然科学基金项目(12272119)
详细信息
    作者简介: 封陈晨(1997-),女,硕士研究生,从事岩石损伤破坏特性研究。E-mail: fengcc_1014@163.com
    通讯作者: 王志亮(1969-),男,教授,博士研究生导师,研究方向为岩石动力学特性与损伤破坏机理。E-mail:cvewzL@hfut.edu.cn
  • 中图分类号: TU455

A study of mineral compositions and micro-structure characteristics for the Jinping marble

More Information
  • 为了研究锦屏大理岩受载过程中内部孔隙结构的演化规律,文章先对其进行矿物成分测定和单轴压缩试验;随后对施加不同轴压后的试样开展了核磁共振(nuclear magnetic resonance,NMR)测试,并分析相应试验结果;最后,根据NMR孔隙度参数,建立起试样损伤度、有效应力比系数与轴压比之间函数关系。结果表明:大理岩内部孔隙分布具有多尺度特性;加载过程中核磁共振 T 2谱分布曲线整体向右移动,小尺寸孔隙占比减少而中等尺寸孔隙占比增加;岩样内部孔隙具有多重分形结构,小孔占比影响孔隙的分形维数和连通性。当小孔占比小时,孔隙结构相对简单,分形维数较低;当小孔占比大时,孔隙结构则较复杂,分形维数增大。大理岩孔隙度和损伤度均随荷载增加呈指数增大,且损伤和未损状态下有效应力比也增大。此项研究对揭示岩石损伤与破坏机理具有重要指导意义,同时在岩石损伤检测方面也具有一定参考价值。

  • 加载中
  • 图 1  锦屏大理岩试样

    Figure 1. 

    图 2  试验仪器

    Figure 2. 

    图 3  大理岩试样X射线衍射图谱

    Figure 3. 

    图 4  岩样孔隙分布比例

    Figure 4. 

    图 5  大理岩核磁共振T2谱分布

    Figure 5. 

    图 6  试样孔隙度与轴压比关系曲线

    Figure 6. 

    图 7  试样损伤度与轴压比关系曲线

    Figure 7. 

    图 8  试样损伤与未损状态下有效应力比系数与轴压比关系比曲线

    Figure 8. 

    表 1  大理岩试样核磁共振谱面积

    Table 1.  NMR spectrum area of the marble samples

    轴向荷载/MPa0100125
    T2谱面积1 555.891 752.632 406.01
    下载: 导出CSV

    表 2  大理岩试样内部孔隙孔径划分

    Table 2.  Pore size partition of pores inside marble samples

    轴向荷载/MPa小孔占比中孔占比大孔占比
    00.470.200.33
    1000.400.320.28
    1250.340.490.17
    下载: 导出CSV

    表 3  分形维数计算结果

    Table 3.  Calculation results of fractal dimension

    荷载/MPaD1D2D3DNMR
    0−0.202.812.892.39
    100−0.512.822.642.24
    125−0.872.632.612.11
    下载: 导出CSV
  • [1]

    张治亮, 徐卫亚, 王伟, 等. 韧性岩石常规三轴压缩试验及变形与损伤演化规律研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3857 − 3862

    ZHANG Zhiliang, XU Weiya, WANG Wei, et al. Investigation on conventional triaxial compression tests of ductile rock and law of deformation and damage evolution[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup 2): 3857 − 3862.(in Chinese with English abstract)

    [2]

    LIU B X,SHU Z L,HAN J J,et al. Real-time CT experimental research on creep microscopic damage evolution of coal rock under compression[J]. Disaster Advances,2012,5(4):667 − 674.

    [3]

    YANG Y S,LI K Y,ZHOU H,et al. Investigation on the relationship between CT numbers and marble failure under different confining pressures[J]. Reviews on Advanced Materials Science,2021,60(1):846 − 852. doi: 10.1515/rams-2021-0070

    [4]

    LI X M,ZHANG D M,YU G,et al. Research on damage and acoustic emission properties of rock under uniaxial compression[J]. Geotechnical and Geological Engineering,2021,39(5):3549 − 3562. doi: 10.1007/s10706-021-01710-5

    [5]

    付腾飞,徐涛,朱万成,等. 基于多晶离散元法的砂岩三轴压缩损伤特性[J]. 东北大学学报(自然科学版),2020,41(7):968 − 974. [FU Tengfei,XU Tao,ZHU Wancheng,et al. Damage compression based on polycrystalline discrete element method[J]. Journal of Northeastern University (Natural Science),2020,41(7):968 − 974. (in Chinese with English abstract)

    [6]

    张国凯,李海波,王明洋,等. 岩石单轴压缩下损伤表征及演化规律对比研究[J]. 岩土工程学报,2019,41(6):1074 − 1082. [ZHANG Guokai,LI Haibo,WANG Mingyang,et al. Comparative study on damage characterization and damage evolution of rock under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering,2019,41(6):1074 − 1082. (in Chinese with English abstract)

    [7]

    张国凯, 李海波, 夏祥, 等. 岩石单轴压缩下能量与损伤演化规律研究[J]. 岩土力学, 2015, 36(增刊1): 94−100

    ZHANG Guokai, LI Haibo, XIA Xiang, et al. Research on energy and damage evolution of rock under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36(Sup 1): 94−100. (in Chinese with English abstract)

    [8]

    李杰林,周科平,张亚民,等. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报,2012,31(6):1208 − 1214. [LI Jielin,ZHOU Keping,ZHANG Yamin,et al. Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1208 − 1214. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.06.016

    [9]

    李杰林,刘汉文,周科平,等. 冻融作用下岩石细观结构损伤的低场核磁共振研究[J]. 西安科技大学学报,2018,38(2):266 − 272. [LI Jielin,LIU Hanwen,ZHOU Keping,et al. An LF-NMR study of the micro-structural deterioration of rocks under the effect of freeze-thaw cycles[J]. Journal of Xi’an University of Science and Technology,2018,38(2):266 − 272. (in Chinese with English abstract)

    [10]

    许玉娟,周科平,李杰林,等. 冻融岩石核磁共振检测及冻融损伤机制分析[J]. 岩土力学,2012,33(10):3001 − 3005. [XU Yujuan,ZHOU Keping,LI Jielin,et al. Study of rock NMR experiment and damage mechanism analysis under freeze-thaw condition[J]. Rock and Soil Mechanics,2012,33(10):3001 − 3005. (in Chinese with English abstract) doi: 10.16285/j.rsm.2012.10.011

    [11]

    张元中,肖立志. 单轴载荷下岩石核磁共振特征的实验研究[J]. 核电子学与探测技术,2006,26(6):731 − 734. [ZHANG Yuanzhong,XIAO Lizhi. Experimental study of the NMR characteristics in rock under uniaxial load[J]. Nuclear Electronics & Detection Technology,2006,26(6):731 − 734. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-0934.2006.06.009

    [12]

    周科平,胡振襄,高峰,等. 基于核磁共振技术的大理岩三轴压缩损伤规律研究[J]. 岩土力学,2014,35(11):3117 − 3122. [ZHOU Keping,HU Zhenxiang,GAO Feng,et al. Study of marble damage laws under triaxial compression condition based on nuclear magnetic resonance technique[J]. Rock and Soil Mechanics,2014,35(11):3117 − 3122. (in Chinese with English abstract)

    [13]

    ANOVITZ L M,COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry,2015,80(1):61 − 164. doi: 10.2138/rmg.2015.80.04

    [14]

    WANG Z L,SHI G Y. Effect of heat treatment on dynamic tensile strength and damage behavior of medium-fine-grained Huashan granite[J]. Experimental Techniques,2017,41(4):365 − 375. doi: 10.1007/s40799-017-0180-7

    [15]

    郭常霖. 多晶材料X射线衍射无标样定量方法[J]. 无机材料学报,1996,11(1):1 − 8. [GUO Changlin. X-ray standardless quantitative analysis method for polycrystalline materials[J]. Journal of Inorganic Materials,1996,11(1):1 − 8. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-324X.1996.01.001

    [16]

    ONDRÁŠIK M,KOPECKÝ M. Rock pore structure as main reason of rock deterioration[J]. Studia Geotechnica et Mechanica,2014,36(1):79 − 88. doi: 10.2478/sgem-2014-0010

    [17]

    胡鑫,王超勇,孙强,等. 核磁共振技术对热解煤孔隙结构分形特征研究[J]. 矿业研究与开发,2021,41(11):67 − 75. [HU Xin,WANG Chaoyong,SUN Qiang,et al. Study on fractal characteristics of pore structure of pyrolysis coal by nuclear magnetic resonance technology[J]. Mining Research and Development,2021,41(11):67 − 75. (in Chinese with English abstract) doi: 10.13827/j.cnki.kyyk.2021.11.011

    [18]

    王伟祥,王志亮,贾帅龙,等. 动态载荷下大理岩断口形貌特征试验研究[J]. 水文地质工程地质,2022,49(3):118 − 124. [WANG Weixiang,WANG Zhiliang,JIA Shuailong,et al. An experimental study of the fracture morphology of marble under dynamic loading[J]. Hydrogeology & Engineering Geology,2022,49(3):118 − 124. (in Chinese with English abstract)

    [19]

    ZHAO G J, CHEN C, YAN H. A thermal damage constitutive model for oil shale based on Weibull statistical theory[J]. Mathematical Problems in Engineering, 2019.https: //doi.org/10.1155/2019/4932586

  • 加载中

(8)

(3)

计量
  • 文章访问数:  723
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2022-04-12
修回日期:  2022-06-23
刊出日期:  2022-11-15

目录