-
摘要:
植被根系对土体的强度有显著影响。现有研究缺乏准确的模型描述根-土复合体破坏时应力状态。为量化植被根系对土体强度的贡献,采用一系列固结不排水三轴试验研究了含根量对根-土复合体强度特征的影响,并基于能量耗散原理建立了根-土复合体强度预测模型,最后对比分析了试验结果与模型预测值。结果表明:根系可显著提高根-土复合体强度,当含根量为0.486%,根-土复合体的偏应力较素土增大了1.70倍,抗剪强度较素土提高了72.1%,围压较小时根系对土体强度的提高更为显著;根-土复合体内摩擦角随含根量的增加变化较小,而根-土复合体的黏聚力随含根量的增加而逐渐增大;根-土复合体模型预测值与试验结果较为接近,表明该模型具有较高的准确率和可靠度。研究成果可为根-土复合体强度特性理论研究提供参考,并为根-土复合体强度预测提供了可靠方法。
Abstract:The root system of vegetation has a significant effect on soil strength. The existing studies lack an analytical description of the stress state during root-soil complex failure. To quantify the contribution of vegetation roots to soil strength, a series of consolidated undrained triaxial tests are conducted to study the strength characteristics of the root-soil composite, and a root-soil composite strength prediction model is established based on the energy dissipation principle. Finally the experimental results and the prediction model are compared and analyzed. The results show that the root system can significantly improves the strength of root-soil composite, when the root concentration is 0.486%, the deviatoric stress of the root-soil composite increases by 1.70 times compared with the plain soil, and the shear strength increases by 72.1% compared with the plain soil, and the root system significantly improves the strength of the soil more when the confining pressure is lower. The internal friction angle of the root-soil complex varies less with the increasing root content, while the cohesion of the root-soil complex gradually increases with the increasing root content. The predicted values of the root-soil complex model are close to the experimental results, indicating that the model is of high accuracy and reliability. The research results can provide a reference for theoretical studies on the strength characteristics of root-soil composites and provide a reliable method for predicting the strength of root-soil composites.
-
Key words:
- root-soil composite /
- root concentration /
- shear strength /
- strength prediction model /
- CU
-
表 1 土料物理力学性质
Table 1. Physical properties of soil
液限/% 塑限/% 干密度/(g·cm−3) 最优含水率/% 33.50 17.40 1.63 16.22 表 2 不同围压下不同含根量时的偏应力
Table 2. Deviatoric stress of different root concentrations under different confining pressures
围压/ kPa 偏应力/ kPa 素土 ρ=0.162% ρ=0.324% ρ=0.486% 200 202.10 240.70 293.70 343.75 600 386.45 428.39 496.91 541.91 1000 577.02 627.91 685.91 729.91 -
[1] 徐华,袁海莉,王歆宇,等. 根系形态和层次结构对根土复合体力学特性影响研究[J]. 岩土工程学报,2022,44(5):926 − 935. [XU Hua,YUAN Haili,WANG Xinyu,et al. Influences of morphology and hierarchy of roots on mechanical characteristics of root-soil composites[J]. Chinese Journal of Geotechnical Engineering,2022,44(5):926 − 935. (in Chinese with English abstract)
[2] 赵亮. 根土复合体抗剪强度试验研究[D]. 长沙: 中南林业科技大学, 2014
ZHAO Liang. Experimental study on shear strength of root-soil composite[D]. Changsha: Central South University of Forestry & Technology, 2014. (in Chinese with English abstract)
[3] WALDRON L J. The shear resistance of root-permeated homogeneous and stratified soil[J]. Soil Science Society of America Journal,1977,41(5):843 − 849. doi: 10.2136/sssaj1977.03615995004100050005x
[4] ABE K,ZIEMER R R. Effect of tree roots on a shear zone:modeling reinforced shear stress[J]. Canadian Journal of Forest Research,1991,21(7):1012 − 1019. doi: 10.1139/x91-139
[5] 陈昌富,刘怀星,李亚平. 草根加筋土的室内三轴试验研究[J]. 岩土力学,2007,28(10):2041 − 2045. [CHEN Changfu,LIU Huaixing,LI Yaping. Study on grassroots-reinforced soil by laboratory triaxial test[J]. Rock and Soil Mechanics,2007,28(10):2041 − 2045. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2007.10.006
[6] SU L J,HU B L,XIE Q J,et al. Experimental and theoretical study of mechanical properties of root-soil interface for slope protection[J]. Journal of Mountain Science,2020,17(11):2784 − 2795. doi: 10.1007/s11629-020-6077-4
[7] 杨幼清,胡夏嵩,李希来,等. 高寒矿区草本植物根系增强排土场边坡土体抗剪强度试验研究[J]. 水文地质工程地质,2018,45(6):105 − 113. [YANG Youqing,HU Xiasong,LI Xilai,et al. An experimental study of the soil shear strength reinforcement of a mine dump slope by herbaceous root systems in alpine regions[J]. Hydrogeology & Engineering Geology,2018,45(6):105 − 113. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2018.06.16
[8] WU T H,MCKINNELL W P,SWANSTON D N. Strength of tree roots and landslides on Prince of Wales Island,Alaska[J]. Canadian Geotechnical Journal,1979,16(1):19 − 33. doi: 10.1139/t79-003
[9] 何伟鹏,刘昌义,周国英,等. 退化高寒草原人工恢复植被根系及根-土复合体力学特性研究[J]. 水文地质工程地质,2022,49(2):207 − 218. [HE Weipeng,LIU Changyi,ZHOU Guoying,et al. A study of the mechanical properties of herbaceous roots and rootsoil composite systems in the degraded alpine pasture artificially restored grassland[J]. Hydrogeology & Engineering Geology,2022,49(2):207 − 218. (in Chinese with English abstract)
[10] GRAY D H,OHASHI H. Mechanics of fiber reinforcement in sand[J]. Journal of Geotechnical Engineering,1983,109(3):335 − 353. doi: 10.1061/(ASCE)0733-9410(1983)109:3(335)
[11] MENG S Y, ZHAO G Q, YANG Y Y. Impact of plant root morphology on rooted-soil shear resistance using triaxial testing[J]. Advances in Civil Engineering, 2020. http://dx. doi.org/10.1155/2020/8825828.
[12] NG C W W, ZHANG Q, NI J J, et al. A new three-dimensional theoretical model for analysing the stability of vegetated slopes with different root architectures and planting patterns[J]. Computers and Geotechnics, 2021.https://doi.org/10.1016/j.compgeo.2020.103912.
[13] MICHALOWSKI R L,C̆ERMÁK J. Strength anisotropy of fiber-reinforced sand[J]. Computers and Geotechnics,2002,29(4):279 − 299. doi: 10.1016/S0266-352X(01)00032-5
[14] DIAMBRA A,IBRAIM E,WOOD D M,et al. Fibre reinforced sands:experiments and modelling[J]. Geotextiles and Geomembranes,2010,28(3):238 − 250. doi: 10.1016/j.geotexmem.2009.09.010
[15] TOMOBE H,FUJISAWA K,MURAKAMI A. A Mohr-Coulomb-Vilar model for constitutive relationship in root-soil interface under changing suction[J]. Soils and Foundations,2021,61(3):815 − 835. doi: 10.1016/j.sandf.2021.03.005
[16] ATHANASOPOULOS G A. Results of direct shear tests on geotextile reinforced cohesive soil[J]. Geotextiles and Geomembranes,1996,14(11):619 − 644. doi: 10.1016/S0266-1144(97)00002-2
[17] LIU C N,ZORNBERG J G,CHEN T C,et al. Behavior of geogrid-sand interface in direct shear mode[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1863 − 1871. doi: 10.1061/(ASCE)GT.1943-5606.0000150
[18] 宋维峰,陈丽华,刘秀萍. 根系与土体接触面相互作用特性试验[J]. 中国水土保持科学,2006,4(2):62 − 65. [SONG Weifeng,CHEN Lihua,LIU Xiuping. Experiment on characteristic of interface between root system and soil[J]. Science of Soil and Water Conservation,2006,4(2):62 − 65. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-3007.2006.02.011
[19] MUIR WOOD D,DIAMBRA A,IBRAIM E. Fibres and soils:a route towards modelling of root-soil systems[J]. Soils and Foundations,2016,56(5):765 − 778. doi: 10.1016/j.sandf.2016.08.003
[20] 王磊,朱斌,李俊超,等. 一种纤维加筋土的两相本构模型[J]. 岩土工程学报,2014,36(7):1326 − 1333. [WANG Lei,ZHU Bin,LI Junchao,et al. Two-phase constitutive model for fiber-reinforced soil[J]. Chinese Journal of Geotechnical Engineering,2014,36(7):1326 − 1333. (in Chinese with English abstract) doi: 10.11779/CJGE201407017
[21] MICHALOWSKI R L,ČERMÁK J. Triaxial compression of sand reinforced with fibers[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(2):125 − 136. doi: 10.1061/(ASCE)1090-0241(2003)129:2(125)
[22] BORDOLOI S, NG C W W. The effects of vegetation traits and their stability functions in bio-engineered slopes: a perspective review[J]. Engineering Geology, 2020. http://dx. doi.org/10.1016/j.enggeo.2020.105742.
[23] MICHALOWSKI R L,ZHAO Aigen. Failure of fiber-reinforced granular soils[J]. Journal of Geotechnical Engineering,1996,122(3):226 − 234. doi: 10.1061/(ASCE)0733-9410(1996)122:3(226)
[24] 中华人民共和国交通部. 公路土工试验规程: JTGE 40—2007[S]. 北京: 人民交通出版社, 2007
Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering: JTGE 40—2007[S]. Beijing: China Communications Press, 2007. (in Chinese)