根-土复合体的三轴试验及其强度分析

钟彩尹, 李鹏程, 马滔, 吴礼舟. 根-土复合体的三轴试验及其强度分析[J]. 水文地质工程地质, 2022, 49(6): 97-104. doi: 10.16030/j.cnki.issn.1000-3665.202205013
引用本文: 钟彩尹, 李鹏程, 马滔, 吴礼舟. 根-土复合体的三轴试验及其强度分析[J]. 水文地质工程地质, 2022, 49(6): 97-104. doi: 10.16030/j.cnki.issn.1000-3665.202205013
ZHONG Caiyin, LI Pengcheng, MA Tao, WU Lizhou. Triaxial test and strength analysis of root-soil composite[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 97-104. doi: 10.16030/j.cnki.issn.1000-3665.202205013
Citation: ZHONG Caiyin, LI Pengcheng, MA Tao, WU Lizhou. Triaxial test and strength analysis of root-soil composite[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 97-104. doi: 10.16030/j.cnki.issn.1000-3665.202205013

根-土复合体的三轴试验及其强度分析

  • 基金项目: 国家自然科学基金重大项目(41790432)
详细信息
    作者简介: 钟彩尹(1999-),女,硕士研究生,主要从事岩土工程方向的学习和研究工作。E-mail:zhongcaiyin@stu.cdut.edu.cn
    通讯作者: 吴礼舟(1975-),男,教授,博士研究生导师,主要从事防灾减灾教学和研究工作。E-mail:lzwu@cqjtu.edu.cn
  • 中图分类号: TU411.3

Triaxial test and strength analysis of root-soil composite

More Information
  • 植被根系对土体的强度有显著影响。现有研究缺乏准确的模型描述根-土复合体破坏时应力状态。为量化植被根系对土体强度的贡献,采用一系列固结不排水三轴试验研究了含根量对根-土复合体强度特征的影响,并基于能量耗散原理建立了根-土复合体强度预测模型,最后对比分析了试验结果与模型预测值。结果表明:根系可显著提高根-土复合体强度,当含根量为0.486%,根-土复合体的偏应力较素土增大了1.70倍,抗剪强度较素土提高了72.1%,围压较小时根系对土体强度的提高更为显著;根-土复合体内摩擦角随含根量的增加变化较小,而根-土复合体的黏聚力随含根量的增加而逐渐增大;根-土复合体模型预测值与试验结果较为接近,表明该模型具有较高的准确率和可靠度。研究成果可为根-土复合体强度特性理论研究提供参考,并为根-土复合体强度预测提供了可靠方法。

  • 加载中
  • 图 1  小叶女贞根系

    Figure 1. 

    图 2  GDS应力路径三轴仪

    Figure 2. 

    图 3  根系分布示意图

    Figure 3. 

    图 4  不同含根量时偏应力与轴向应变的关系

    Figure 4. 

    图 5  不同围压下偏应力与轴向应变的关系

    Figure 5. 

    图 6  根-土复合体抗剪强度指标与ρ的关系

    Figure 6. 

    图 7  不同含根量根土复合体模型预测结果与试验结果对比

    Figure 7. 

    表 1  土料物理力学性质

    Table 1.  Physical properties of soil

    液限/%塑限/%干密度/(g·cm−3最优含水率/%
    33.5017.401.6316.22
    下载: 导出CSV

    表 2  不同围压下不同含根量时的偏应力

    Table 2.  Deviatoric stress of different root concentrations under different confining pressures

    围压/ kPa偏应力/ kPa
    素土ρ=0.162%ρ=0.324%ρ=0.486%
    200202.10240.70293.70343.75
    600386.45428.39496.91541.91
    1000577.02627.91685.91729.91
    下载: 导出CSV
  • [1]

    徐华,袁海莉,王歆宇,等. 根系形态和层次结构对根土复合体力学特性影响研究[J]. 岩土工程学报,2022,44(5):926 − 935. [XU Hua,YUAN Haili,WANG Xinyu,et al. Influences of morphology and hierarchy of roots on mechanical characteristics of root-soil composites[J]. Chinese Journal of Geotechnical Engineering,2022,44(5):926 − 935. (in Chinese with English abstract)

    [2]

    赵亮. 根土复合体抗剪强度试验研究[D]. 长沙: 中南林业科技大学, 2014

    ZHAO Liang. Experimental study on shear strength of root-soil composite[D]. Changsha: Central South University of Forestry & Technology, 2014. (in Chinese with English abstract)

    [3]

    WALDRON L J. The shear resistance of root-permeated homogeneous and stratified soil[J]. Soil Science Society of America Journal,1977,41(5):843 − 849. doi: 10.2136/sssaj1977.03615995004100050005x

    [4]

    ABE K,ZIEMER R R. Effect of tree roots on a shear zone:modeling reinforced shear stress[J]. Canadian Journal of Forest Research,1991,21(7):1012 − 1019. doi: 10.1139/x91-139

    [5]

    陈昌富,刘怀星,李亚平. 草根加筋土的室内三轴试验研究[J]. 岩土力学,2007,28(10):2041 − 2045. [CHEN Changfu,LIU Huaixing,LI Yaping. Study on grassroots-reinforced soil by laboratory triaxial test[J]. Rock and Soil Mechanics,2007,28(10):2041 − 2045. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2007.10.006

    [6]

    SU L J,HU B L,XIE Q J,et al. Experimental and theoretical study of mechanical properties of root-soil interface for slope protection[J]. Journal of Mountain Science,2020,17(11):2784 − 2795. doi: 10.1007/s11629-020-6077-4

    [7]

    杨幼清,胡夏嵩,李希来,等. 高寒矿区草本植物根系增强排土场边坡土体抗剪强度试验研究[J]. 水文地质工程地质,2018,45(6):105 − 113. [YANG Youqing,HU Xiasong,LI Xilai,et al. An experimental study of the soil shear strength reinforcement of a mine dump slope by herbaceous root systems in alpine regions[J]. Hydrogeology & Engineering Geology,2018,45(6):105 − 113. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2018.06.16

    [8]

    WU T H,MCKINNELL W P,SWANSTON D N. Strength of tree roots and landslides on Prince of Wales Island,Alaska[J]. Canadian Geotechnical Journal,1979,16(1):19 − 33. doi: 10.1139/t79-003

    [9]

    何伟鹏,刘昌义,周国英,等. 退化高寒草原人工恢复植被根系及根-土复合体力学特性研究[J]. 水文地质工程地质,2022,49(2):207 − 218. [HE Weipeng,LIU Changyi,ZHOU Guoying,et al. A study of the mechanical properties of herbaceous roots and rootsoil composite systems in the degraded alpine pasture artificially restored grassland[J]. Hydrogeology & Engineering Geology,2022,49(2):207 − 218. (in Chinese with English abstract)

    [10]

    GRAY D H,OHASHI H. Mechanics of fiber reinforcement in sand[J]. Journal of Geotechnical Engineering,1983,109(3):335 − 353. doi: 10.1061/(ASCE)0733-9410(1983)109:3(335)

    [11]

    MENG S Y, ZHAO G Q, YANG Y Y. Impact of plant root morphology on rooted-soil shear resistance using triaxial testing[J]. Advances in Civil Engineering, 2020. http://dx. doi.org/10.1155/2020/8825828.

    [12]

    NG C W W, ZHANG Q, NI J J, et al. A new three-dimensional theoretical model for analysing the stability of vegetated slopes with different root architectures and planting patterns[J]. Computers and Geotechnics, 2021.https://doi.org/10.1016/j.compgeo.2020.103912.

    [13]

    MICHALOWSKI R L,C̆ERMÁK J. Strength anisotropy of fiber-reinforced sand[J]. Computers and Geotechnics,2002,29(4):279 − 299. doi: 10.1016/S0266-352X(01)00032-5

    [14]

    DIAMBRA A,IBRAIM E,WOOD D M,et al. Fibre reinforced sands:experiments and modelling[J]. Geotextiles and Geomembranes,2010,28(3):238 − 250. doi: 10.1016/j.geotexmem.2009.09.010

    [15]

    TOMOBE H,FUJISAWA K,MURAKAMI A. A Mohr-Coulomb-Vilar model for constitutive relationship in root-soil interface under changing suction[J]. Soils and Foundations,2021,61(3):815 − 835. doi: 10.1016/j.sandf.2021.03.005

    [16]

    ATHANASOPOULOS G A. Results of direct shear tests on geotextile reinforced cohesive soil[J]. Geotextiles and Geomembranes,1996,14(11):619 − 644. doi: 10.1016/S0266-1144(97)00002-2

    [17]

    LIU C N,ZORNBERG J G,CHEN T C,et al. Behavior of geogrid-sand interface in direct shear mode[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1863 − 1871. doi: 10.1061/(ASCE)GT.1943-5606.0000150

    [18]

    宋维峰,陈丽华,刘秀萍. 根系与土体接触面相互作用特性试验[J]. 中国水土保持科学,2006,4(2):62 − 65. [SONG Weifeng,CHEN Lihua,LIU Xiuping. Experiment on characteristic of interface between root system and soil[J]. Science of Soil and Water Conservation,2006,4(2):62 − 65. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-3007.2006.02.011

    [19]

    MUIR WOOD D,DIAMBRA A,IBRAIM E. Fibres and soils:a route towards modelling of root-soil systems[J]. Soils and Foundations,2016,56(5):765 − 778. doi: 10.1016/j.sandf.2016.08.003

    [20]

    王磊,朱斌,李俊超,等. 一种纤维加筋土的两相本构模型[J]. 岩土工程学报,2014,36(7):1326 − 1333. [WANG Lei,ZHU Bin,LI Junchao,et al. Two-phase constitutive model for fiber-reinforced soil[J]. Chinese Journal of Geotechnical Engineering,2014,36(7):1326 − 1333. (in Chinese with English abstract) doi: 10.11779/CJGE201407017

    [21]

    MICHALOWSKI R L,ČERMÁK J. Triaxial compression of sand reinforced with fibers[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(2):125 − 136. doi: 10.1061/(ASCE)1090-0241(2003)129:2(125)

    [22]

    BORDOLOI S, NG C W W. The effects of vegetation traits and their stability functions in bio-engineered slopes: a perspective review[J]. Engineering Geology, 2020. http://dx. doi.org/10.1016/j.enggeo.2020.105742.

    [23]

    MICHALOWSKI R L,ZHAO Aigen. Failure of fiber-reinforced granular soils[J]. Journal of Geotechnical Engineering,1996,122(3):226 − 234. doi: 10.1061/(ASCE)0733-9410(1996)122:3(226)

    [24]

    中华人民共和国交通部. 公路土工试验规程: JTGE 40—2007[S]. 北京: 人民交通出版社, 2007

    Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering: JTGE 40—2007[S]. Beijing: China Communications Press, 2007. (in Chinese)

  • 加载中

(7)

(2)

计量
  • 文章访问数:  2192
  • PDF下载数:  80
  • 施引文献:  0
出版历程
收稿日期:  2022-05-06
修回日期:  2022-07-11
刊出日期:  2022-11-15

目录