膨胀土地区地下结构抗浮失效机理及主动抗浮措施应用

罗益斌, 陈继彬, 王媛媛, 沈攀. 膨胀土地区地下结构抗浮失效机理及主动抗浮措施应用[J]. 水文地质工程地质, 2022, 49(6): 64-73. doi: 10.16030/j.cnki.issn.1000-3665.202203008
引用本文: 罗益斌, 陈继彬, 王媛媛, 沈攀. 膨胀土地区地下结构抗浮失效机理及主动抗浮措施应用[J]. 水文地质工程地质, 2022, 49(6): 64-73. doi: 10.16030/j.cnki.issn.1000-3665.202203008
LUO Yibin, CHEN Jibin, WANG Yuanyuan, SHEN Pan. Anti-floating failure mechanism of underground structures in expansive soil area and application of active anti-floating measures[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 64-73. doi: 10.16030/j.cnki.issn.1000-3665.202203008
Citation: LUO Yibin, CHEN Jibin, WANG Yuanyuan, SHEN Pan. Anti-floating failure mechanism of underground structures in expansive soil area and application of active anti-floating measures[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 64-73. doi: 10.16030/j.cnki.issn.1000-3665.202203008

膨胀土地区地下结构抗浮失效机理及主动抗浮措施应用

  • 基金项目: 中国建筑股份科技研发课题青年基金项目(CSCEC-2021-Q-64)
详细信息
    作者简介: 罗益斌(1989- ),男,工程师,工学学士,主要从事岩土工程、地下结构抗浮工程研究。E-mail:734472639@qq.com
    通讯作者: 陈继彬(1987-),男,高级工程师,工学博士,主要从事岩土工程、城市特殊岩土研究。E-mail:weizhishuiyu@163.com
  • 中图分类号: TU443

Anti-floating failure mechanism of underground structures in expansive soil area and application of active anti-floating measures

More Information
  • 膨胀土地层透水性弱、渗透性低,一般被视为相对隔水层或隔水层,其抗浮设防水位需综合考虑场地渗流特性、肥槽填料特性、水-结构相互作用而确定,建筑工程抗浮设计问题素来棘手难解。本文依托成都膨胀土地区某商住楼地下室局部抗浮失效案例,通过地下室渗漏水水源调查、基底地下水流量监测、排水系统排泄能力评价等方法,认为地下室上浮属肥槽施工控制不当使高压水渗入抗水板底部进而导致水力学条件失衡造成的。基于此,结合FLAC3D有限差分法,详细探讨了地下水浮力及膨胀土膨胀力作用下地下结构的力学行为特征。结合工程实际,提出一种以“卸压”为主的地下室抗浮方法,其理念是在底板开设卸压孔使地下水流动,通过主动式泄排适量地下水来减小或消除水浮力,并辅以观测及自动控制措施,实现抗浮目的。工程监测结果表明,流量及水头可控,运行效果良好,成本低廉。

  • 加载中
  • 图 1  建筑地下结构断面图(单位:m)

    Figure 1. 

    图 2  典型破坏现象示意图

    Figure 2. 

    图 3  建筑地下室肥槽回填情况

    Figure 3. 

    图 4  原位试验布设点

    Figure 4. 

    图 5  泄水孔涌水量-抽排次数曲线

    Figure 5. 

    图 6  地下室上浮失效原因简图(单位:m)

    Figure 6. 

    图 7  计算模型

    Figure 7. 

    图 8  基底不同深度膨胀土含水率

    Figure 8. 

    图 9  基底反力作用下的整体力学计算结果

    Figure 9. 

    图 10  基底反力作用下的局部力学计算结果

    Figure 10. 

    图 11  排水卸压措施构造大样图

    Figure 11. 

    图 12  测压管水头高度监测曲线

    Figure 12. 

    表 1  研究区岩土体物理力学参数

    Table 1.  Physical and mechanical parameters of rock and soil mass

    岩土体类型重度/
    (kN·m−3
    内摩擦角/
    (°)
    黏聚力/
    kPa
    压缩模量/
    MPa
    渗透系数/
    (m·d−1
    杂填土19.08.080.2
    黏土20.06.0155.02.5×10−3
    含黏土卵石19.520.081.5
    全风化泥岩19.515.0156.51.2
    下载: 导出CSV

    表 2  现场渗透试验结果

    Table 2.  Field penetration test results

    渗透点编号Ki/(m·d−1K均值/(m·d−1
    10.7540.8580.6390.750
    21.5291.3341.9101.591
    30.6920.4030.0510.382
    48.2228.2498.1688.213
    57.5847.3207.5847.496
    67.0197.0197.0197.019
    79.3109.0229.8979.076
    86.2736.1536.0956.174
    910.2610.2810.1910.243
    注:考虑到渗透试验初始状态对入渗影响较大,在处理时采用试验结束时段数据进行从后往前逐段累加处理,分别求得不同渗透系数Ki
    下载: 导出CSV

    表 3  肥槽积水补给来源水量计算汇总表

    Table 3.  Calculation summary of water supply source of fertilizer tank

    补给来源简化计算
    补给量/m3
    对肥槽水位
    的影响/m
    补给方式
    降雨126907.35直接补给肥槽
    膨胀土层地下水微弱微弱
    远端地表水
    (北干支渠)
    微弱微弱通过膨胀土层或填土层径流补给
    上层滞水6000.3~0.4直接补给肥槽
    下载: 导出CSV

    表 4  结构体物理力学参数

    Table 4.  Physical and mechanical parameters of structure

    内容密度/
    (kg·m−3
    黏聚力/
    kPa
    内摩擦角/
    (°)
    体积模量/
    MPa
    剪切模量/
    MPa
    素混凝土垫层187016.65 13.304.041.76
    抗水板183010.8717.743.731.53
    建筑体191011.9820.374.512.08
    下载: 导出CSV

    表 5  排水卸压措施基本设计参数

    Table 5.  Basic design parameters of the drainage and pressure relief measures

    参量名称符号建议取值
    安全系数k1.4
    潜水含水层厚度H8.5 m
    卸压降水影响半径R210 m
    卸压水位降深h07 m
    单个卸压点排水能力q100 m3/d
    肥槽入渗系数λy0.2
    地表径流系数φ0.5
    设计暴雨强度700 mm/d
    汇水面积S汇水12690 m2
    泄压孔半径rw0.053 m
    下载: 导出CSV
  • [1]

    于贵,李星,舒中文,等. 高层建筑地下室上浮变形特征及处置措施研究[J]. 地下空间与工程学报,2020,16(1):211 − 218. [YU Gui,LI Xing,SHU Zhongwen,et al. Research on floating deformation characteristics and treatment measures of high-rise building basement[J]. Chinese Journal of Underground Space and Engineering,2020,16(1):211 − 218. (in Chinese with English abstract)

    [2]

    朱东风,曹洪,骆冠勇,等. 截排减压抗浮系统在抗浮事故处理中的应用[J]. 岩土工程学报,2018,40(9):1746 − 1752. [ZHU Dongfeng,CAO Hong,LUO Guanyong,et al. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1746 − 1752. (in Chinese with English abstract)

    [3]

    王海东,罗雨佳. 超大地下室施工期抗浮破坏机理分析与应对思考[J]. 铁道科学与工程学报,2019,16(10):2538 − 2546. [WANG Haidong,LUO Yujia. Analysis of the mechanism of anti-floating damage and its countermeasures during construction period of oversized underground garage[J]. Journal of Railway Science and Engineering,2019,16(10):2538 − 2546. (in Chinese with English abstract) doi: 10.19713/j.cnki.43-1423/u.2019.10.021

    [4]

    崔虎群,李文鹏,康卫东,等. 黑河中游不同灌溉方式下地下水入渗补给特征研究[J]. 水文地质工程地质,2022,49(3):22 − 28. [CUI Huqun,LI Wenpeng,KANG Weidong,et al. A study of groundwater recharge under different irrigation conditions in the middle reaches of the Heihe River[J]. Hydrogeology & Engineering Geology,2022,49(3):22 − 28. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202111019

    [5]

    张晨晨,黄翀,何云,等. 黄河三角洲浅层地下水埋深动态与降水的时空响应关系[J]. 水文地质工程地质,2020,47(5):21 − 30. [ZHANG Chenchen,HUANG Chong,HE Yun,et al. An analysis of the space-time patterns of precipitation-shallow groundwater depth interactions in the Yellow River Delta[J]. Hydrogeology & Engineering Geology,2020,47(5):21 − 30. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202002033

    [6]

    中华人民共和国住房和城乡建设部. 建筑工程抗浮技术标准: JGJ 476—2019[S]. 北京: 中国建筑工业出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for building engineering against uplift: JGJ 476—2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)

    [7]

    黄俊光,李健斌,秦泳生. 超深地下工程抗浮技术的探索[J]. 建筑结构,2020,50(10):129 − 134. [HUANG Junguang,LI Jianbin,QIN Yongsheng. Exploration of anti-floating technology for super-deep underground structures[J]. Building Structure,2020,50(10):129 − 134. (in Chinese with English abstract) doi: 10.19701/j.jzjg.2020.10.018

    [8]

    XIAO Y P,CAO H,LUO G Y,et al. Modelling seepage flow near the pipe tip[J]. Acta Geotechnica,2020,15(7):1953 − 1966. doi: 10.1007/s11440-019-00878-8

    [9]

    骆冠勇,马铭骏,曹洪,等. 临江地下结构主被动联合抗浮方法及应用[J]. 岩土力学,2020,41(11):3730 − 3739. [LUO Guanyong,MA Mingjun,CAO Hong,et al. A new anti-float method for riverside underground structures:drainage corridor combined with uplift piles or uplift anchors[J]. Rock and Soil Mechanics,2020,41(11):3730 − 3739. (in Chinese with English abstract) doi: 10.16285/j.rsm.2020.0608

    [10]

    朱东风. 地下结构截排减压抗浮法渗控关键问题研究[D]. 广州: 华南理工大学, 2019

    ZHU Dongfeng. A study on seepage control issues of anti-uplift method for underground structures based on intercepting and discharging water[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)

    [11]

    NI P P, KANG X, SONG L H, et al. Model tests of buoyant force on underground structures[J]. Journal of Testing and Evaluation, 2019, 47(2). DOI: 10.1520/JTE20170017.

    [12]

    陆启贤. 土中孔压传递规律及水浮力折减机理研究[D]. 南宁: 广西大学, 2019

    LU Qixian. Study on pore pressure transfer rule and water buoyancy reduction mechanism[D]. Nanning: Guangxi University, 2019. (in Chinese with English abstract)

    [13]

    木林隆, 王乐, 李杰, 等. 地下结构对地下水渗流场水位改变的数值分析[J]. 土木工程学报, 2019, 52(增刊1): 78 − 84

    MU Linlong, WANG Le, LI Jie, et al. Numerical analysis of influence of the underground structure on seepage[J]. China Civil Engineering Journal, 2019, 52(Sup 1): 78 − 84. (in Chinese with English abstract)

    [14]

    王新,康景文. 成都地区卵石层抗浮锚杆的设计方法探讨[J]. 四川建筑科学研究,2012,38(6):131 − 134. [WANG Xin,KANG Jingwen. Discussion on design method for anti-float anchor at pebble soil in Chengdu[J]. Sichuan Building Science,2012,38(6):131 − 134. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-1933.2012.06.035

    [15]

    ZHU H H,MEI G X,XU M,et al. Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor[J]. Geomechanics and Engineering,2014,7(2):165 − 181. doi: 10.12989/gae.2014.7.2.165

    [16]

    ZHANG C C,ZHU H H,XU Q,et al. Time-dependent pullout behavior of glass fiber reinforced polymer (GFRP) soil nail in sand[J]. Canadian Geotechnical Journal,2015,52(6):671 − 681. doi: 10.1139/cgj-2013-0381

    [17]

    梅国雄, 宋林辉. 地下结构抗浮理论与技术应用[M]. 北京: 科学出版社, 2019

    MEI Guoxiong, SONG Linhui. Anti floating theory and technical application of underground structures[M]. Beijing: Science Press, 2019. (in Chinese)

    [18]

    孙书伟, 林杭, 任连伟. FLAC3D在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2011

    SUN Shuwei, LIN Hang, REN Lianwei. Application of FLAC3D in geotechnical engineering[M]. Beijing: China Water Power Press, 2011. (in Chinese)

    [19]

    中华人民共和国住房和城乡建设部. 膨胀土地区建筑技术规范: GB 50112—2013[S]. 北京: 中国建筑工业出版社, 2013

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for building in expansive soil regions: GB 50112—2013[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)

    [20]

    中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for retaining and protection of building foundation excavations: JGJ 120—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

  • 加载中

(12)

(5)

计量
  • 文章访问数:  1113
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2022-03-03
修回日期:  2022-06-15
刊出日期:  2022-11-15

目录