单井注抽示踪试验推估含水层中DNAPL残留量的数值分析

顾瑞婷, 施小清, 郭琼泽, 宋美钰, 徐红霞, 吴吉春. 单井注抽示踪试验推估含水层中DNAPL残留量的数值分析[J]. 水文地质工程地质, 2023, 50(4): 204-212. doi: 10.16030/j.cnki.issn.1000-3665.202208047
引用本文: 顾瑞婷, 施小清, 郭琼泽, 宋美钰, 徐红霞, 吴吉春. 单井注抽示踪试验推估含水层中DNAPL残留量的数值分析[J]. 水文地质工程地质, 2023, 50(4): 204-212. doi: 10.16030/j.cnki.issn.1000-3665.202208047
GU Ruiting, SHI Xiaoqing, GUO Qiongze, SONG Meiyu, XU Hongxia, WU Jichun. Numerical analysis for estimating residual DNAPL by single-well “push-pull” partitioning tracer tests[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 204-212. doi: 10.16030/j.cnki.issn.1000-3665.202208047
Citation: GU Ruiting, SHI Xiaoqing, GUO Qiongze, SONG Meiyu, XU Hongxia, WU Jichun. Numerical analysis for estimating residual DNAPL by single-well “push-pull” partitioning tracer tests[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 204-212. doi: 10.16030/j.cnki.issn.1000-3665.202208047

单井注抽示踪试验推估含水层中DNAPL残留量的数值分析

  • 基金项目: 国家自然科学基金项目(41977157)
详细信息
    作者简介: 顾瑞婷(1999-),女,硕士研究生,主要从事地下水数值模拟研究。E-mail: mg21290072@smail.nju.edu.cn
    通讯作者: 施小清(1979-),男,教授,博士,主要从事地下水数值模拟研究。E-mail: shixq@nju.edu.cn
  • 中图分类号: X523

Numerical analysis for estimating residual DNAPL by single-well “push-pull” partitioning tracer tests

More Information
  • 目前,刻画场地重非水相液体(dense non-aqueous phase liquid, DNAPL)污染常用的钻孔取样和井间分溶示踪试验方法成本高昂。相比而言,单井注抽试验节省经费,且对污染源区的扰动少,但该试验方法推估DNAPL残留量的准确性尚未得到定量验证。针对该问题,基于数值方法分析了示踪剂类型、注抽速率、污染源区结构等因素对单井注抽试验推估DNAPL残留量精度的影响。结果表明:(1)选用分溶系数比2,2-二甲基-3-戊醇(2,2-dimethyl-3-pentanol, DMP)低的己醇进行示踪,示踪剂回收更加充分,推估污染物残留量的平均精度增幅可达35.11%;(2)当注入速率从100 m3/d提高至130 m³/d、抽出速率从120 m3/d提高至150 m3/d,示踪剂接触的污染源区面积更大,均质源区对应的污染物残留量平均精度从42.45%提高到60.26%,非均质源区对应的平均精度从27.69%提高至48.72%;(3)污染源区结构复杂程度的增加会阻碍示踪剂的运移,非均质源区对应的平均精度比均质源区降低了13.15%;(4)单井注抽示踪试验更适用于离散状为主的污染源区,其平均精度比池状为主的源区增加了15.74%。单井注抽试验结合数值分析可有效推估残留非水相液体的分布,建议在DNAPL污染场地精细调查中使用,可为场地风险评估和修复方案的制定提供参考。

  • 加载中
  • 图 1  单井注抽示踪过程概念示意图[20, 21]

    Figure 1. 

    图 2  概念模型示意图

    Figure 2. 

    图 3  污染源区算例1~4的PCE饱和度分布情况

    Figure 3. 

    图 4  4 个污染源区在不同情景下推估PCE残留量的精度

    Figure 4. 

    图 5  算例1和算例2在不同情景下的示踪剂穿透曲线

    Figure 5. 

    图 6  示踪30 d算例1和算例2的示踪剂浓度分布

    Figure 6. 

    图 7  试验结束算例1-情景1和算例2-情景3的示踪剂浓度分布

    Figure 7. 

    表 1  不同泄漏速率下生成的污染源区设置

    Table 1.  Cases of contaminant source zones with different leakage rates

    算例设置 污染源区结构 泄漏速率/(m3·d−1 实际残留量/m3 GTP
    算例1 均质 0.3 1.97 1.96
    算例2 非均质 0.3 2.57 2.35
    算例3 均质 0.9 3.02 0.90
    算例4 非均质 0.9 3.49 0.71
    下载: 导出CSV

    表 2  模型参数

    Table 2.  Model parameters

    研究区参数 取值
    PCE的密度/(kg·m−3 1.62
    PCE的黏滞性/(mPa·S) 0.89
    水力梯度 0.002
    孔隙度 0.34
    纵向弥散度/m 0.03
    横向弥散度/m 0.009
    DMP对PCE的分溶系数 27.5
    己醇对PCE的分溶系数 8.5
    下载: 导出CSV

    表 3  毛管压力及相对渗透率参数

    Table 3.  Capillary pressure and relative permeability parameters

    毛管压力模型
    (Brooks-Corey)
    毛管压力
    端点值
    C1 9.6 C2 19.9
    毛管压力
    指数
    λ1 −0.52 λ2 2
    相对渗透率
    模型
    (Corey-Type)
    残余饱和度 Sw 0.24 So 0.2
    端点相对
    渗透率
    Pw 0.486 Po 0.65
    相对渗透率指数 nw 2.85 no 2.7
    注:下标1和2分别表示源区生成阶段和单井注抽阶段的参数;下标w和o分别代表水相和油相。
    下载: 导出CSV

    表 4  单井注抽示踪模拟设置

    Table 4.  The setting of single-well “push-pull” tracer simulation

    模拟条件 注入阶段 抽取阶段
    注入速率
    /(m3·d−1
    注入
    天数/d
    抽取速率
    /(m3·d−1
    抽取
    天数/d
    算例1、3 情景1 100 30 120 30
    情景2 130 30 150 30
    算例2、4 情景3 100 30 120 30
    情景4 130 30 150 30
    下载: 导出CSV
  • [1]

    郑菲,高燕维,徐红霞,等. 非均质性对DNAPL污染源区结构特征影响的实验研究[J]. 水文地质工程地质,2016,43(5):140 − 148. [ZHENG Fei,GAO Yanwei,XU Hongxia,et al. An experimental study of the influence of heterogeneity on the DNAPL source-zone architecture[J]. Hydrogeology & Engineering Geology,2016,43(5):140 − 148. (in Chinese with English abstract)

    ZHENG Fei, GAO Yanwei, XU Hongxia, et al. An experimental study of the influence of heterogeneity on the DNAPL source-zone architecture[J]. Hydrogeology & Engineering Geology, 2016, 43(5): 140-148. (in Chinese with English abstract)

    [2]

    赵科锋,王锦国,曹慧群. 含单裂隙非饱和带中轻非水相流体修复的数值模拟[J]. 水文地质工程地质,2020,47(5):43 − 55. [ZHAO Kefeng,WANG Jinguo,CAO Huiqun. Numerical simulation of light non-aqueous phase liquids remediation in the unsaturated zone with single fractures[J]. Hydrogeology & Engineering Geology,2020,47(5):43 − 55. (in Chinese with English abstract)

    ZHAO Kefeng, WANG Jinguo, CAO Huiqun. Numerical simulation of light non-aqueous phase liquids remediation in the unsaturated zone with single fractures[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 43-55. (in Chinese with English abstract)

    [3]

    孙启明,高茂生,党显璋. 垃圾填埋场渗滤液变密度地下水溶质运移模拟[J]. 吉林大学学报(地球科学版),2022,52(4):1265 − 1274. [SUN Qiming,GAO Maosheng,DANG Xianzhang. Simulation of solute transport in variable-density groundwater for landfill leachate[J]. Journal of Jilin University (Earth Science Edition),2022,52(4):1265 − 1274. (in Chinese with English abstract)

    SUN Qiming, GAO Maosheng, DANG Xianzhang. Simulation of solute transport in variable-density groundwater for landfill leachate[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(4): 1265-1274. (in Chinese with English abstract)

    [4]

    KUEPER B H,REDMAN D,STARR R C,et al. A field experiment to study the behavior of tetrachloroethylene below the water table:Spatial distribution of residual and pooled DNAPL[J]. Ground Water,1993,31(5):756 − 766. doi: 10.1111/j.1745-6584.1993.tb00848.x

    [5]

    卢文喜,罗建男,辛欣,等. 表面活性剂强化的DNAPLs污染含水层修复过程的数值模拟[J]. 地球科学,2012,37(5):1075 − 1081. [LU Wenxi,LUO Jiannan,XIN Xin,et al. Numerical simulation of surfactant enhanced aquifer remediation processes at DNAPLs contaminated aquifer[J]. Earth Science,2012,37(5):1075 − 1081. (in Chinese with English abstract)

    LU Wenxi, LUO Jiannan, XIN Xin, et al. Numerical simulation of surfactant enhanced aquifer remediation processes at DNAPLs contaminated aquifer[J]. Earth Science, 2012, 37(5): 1075-1081. (in Chinese with English abstract)

    [6]

    郭琼泽,张烨,姜蓓蕾,等. 表面活性剂增强修复地下水中PCE的砂箱实验及模拟[J]. 中国环境科学,2018,38(9):3398 − 3405. [GUO Qiongze,ZHANG Ye,JIANG Beilei,et al. Experiment and numerical simulation of surfactant-enhanced aquifer remediation in PCE contaminated laboratory sandbox[J]. China Environmental Science,2018,38(9):3398 − 3405. (in Chinese with English abstract)

    GUO Qiongze, ZHANG Ye, JIANG Beilei, et al. Experiment and numerical simulation of surfactant-enhanced aquifer remediation in PCE contaminated laboratory sandbox[J]. China Environmental Science, 2018, 38(9): 3398-3405. (in Chinese with English abstract)

    [7]

    宋美钰,施小清,马春龙,等. 复杂DNAPL污染源区溶解相污染通量的升尺度计算[J]. 中国环境科学,2022,42(5):2095 − 2104. [SONG Meiyu,SHI Xiaoqing,MA Chunlong,et al. Upscaling dissolved phase mass flux for complex DNAPL source zones[J]. China Environmental Science,2022,42(5):2095 − 2104. (in Chinese with English abstract)

    SONG Meiyu, SHI Xiaoqing, MA Chunlong, et al. Upscaling dissolved phase mass flux for complex DNAPL source zones[J]. China Environmental Science, 2022, 42(5): 2095-2104. (in Chinese with English abstract)

    [8]

    周媛,杨盼瑞,郭会荣,等. 注入丁醇调节重非水液相密度的微空隙试验模拟[J]. 地质科技通报,2022,41(1):223 − 230. [ZHOU Yuan,YANG Panrui,GUO Huirong,et al. Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid:Pore-scale experimental simulation[J]. Bulletin of Geological Science and Technology,2022,41(1):223 − 230. (in Chinese with English abstract)

    ZHOU Yuan, YANG Panrui, GUO Huirong, et al. Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid: pore-scale experimental simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 223-230. (in Chinese with English abstract)

    [9]

    郭琼泽,施小清,王慧婷,等. 井间分溶示踪估计重非水相污染物残留量的影响因素数值分析[J]. 水文地质工程地质,2019,46(6):165 − 172. [GUO Qiongze,SHI Xiaoqing,WANG Huiting,et al. Numerical analysis of the influencing factors for estimating DNAPL residual by the partitioning interwell tracer tests[J]. Hydrogeology & Engineering Geology,2019,46(6):165 − 172. (in Chinese with English abstract)

    GUO Qiongze, SHI Xiaoqing, WANG Huiting, et al. Numerical analysis of the influencing factors for estimating DNAPL residual by the partitioning interwell tracer tests[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 165-172. (in Chinese with English abstract)

    [10]

    刘雪松, 张涛, 李敬杰. 污染场地调查技术综述[C]//中国环境科学学会. 2014中国环境科学学会学术年会论文集. 成都: 中国环境科学学会, 2014: 368 − 374

    LIU Xuesong, ZHANG Tao, LI Jingjie. A review of contaminated site survey techniques[C]//Chinese Society for Environmental Sciences. Proceedings of 2014 annual meeting of Chinese society for environmental sciences. Chengdu: Chinese Society for Environmental Sciences, 2014: 6267 − 6273. (in Chinese)

    [11]

    王波,王宇,张贵,等. 滇东南泸江流域岩溶地下水质量及污染影响因素研究[J]. 地球学报,2021,42(3):352 − 362. [WANG Bo,WANG Yu,ZHANG Gui,et al. A study of quality and pollution factors of Karst groundwater in Lujiang River Basin in southeast Yunnan[J]. Acta Geoscientica Sinica,2021,42(3):352 − 362. (in Chinese with English abstract)

    WANG Bo, WANG Yu, ZHANG Gui, et al. A study of quality and pollution factors of Karst groundwater in Lujiang River Basin in southeast Yunnan[J]. Acta Geoscientica Sinica, 2021, 42(3): 352-362. (in Chinese with English abstract)

    [12]

    马春龙,施小清,许伟伟,等. 基于自组织神经网络的污染场地多监测指标相关性分析[J]. 水文地质工程地质,2021,48(3):191 − 202. [MA Chunlong,SHI Xiaoqing,XU Weiwei,et al. Correlation analysis of multiple monitoring indicators of contaminated site based on self-organizing map[J]. Hydrogeology & Engineering Geology,2021,48(3):191 − 202. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202008001

    MA Chunlong, SHI Xiaoqing, XU Weiwei, et al. Correlation analysis of multiple monitoring indicators of contaminated site based on self-organizing map[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 191-202. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202008001

    [13]

    JIN Minquan,DELSHAD M,DWARAKANATH V,et al. Partitioning tracer test for detection,estimation,and remediation performance assessment of subsurface nonaqueous phase liquids[J]. Water Resources Research,1995,31(5):1201 − 1211. doi: 10.1029/95WR00174

    [14]

    YOUNG C M,JACKSON R E,JIN M,et al. Characterization of a TCE DNAPL zone in alluvium by partitioning tracers[J]. Groundwater Monitoring & Remediation,1999,19(1):84 − 94.

    [15]

    MORENO-BARBERO E,ILLANGASEKARE T H. Influence of dense nonaqueous phase liquid pool morphology on the performance of partitioning tracer tests:Evaluation of the equilibrium assumption[J]. Water Resources Research,2006,42(4):W04408.

    [16]

    DRIDI L,POLLET I,RAZAKARISOA O,et al. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach[J]. Journal of Contaminant Hydrology,2009,107(1/2):22 − 44.

    [17]

    CHO I,JU Y,LEE S S,et al. Characterization of a NAPL-contaminated site using the partitioning behavior of noble gases[J]. Journal of Contaminant Hydrology,2020,235:103733. doi: 10.1016/j.jconhyd.2020.103733

    [18]

    ISTOK J D,FIELD J A,SCHROTH M H,et al. Single-well “Push−Pull” partitioning tracer test for NAPL detection in the subsurface[J]. Environmental Science & Technology,2002,36(12):2708 − 2716.

    [19]

    HEBIG K H,ZEILFELDER S,ITO N,et al. Study of the effects of the chaser in push-pull tracer tests by using temporal moment analysis[J]. Geothermics,2015,54:43 − 53. doi: 10.1016/j.geothermics.2014.11.004

    [20]

    WANG Quanrong,ZHAN Hongbin,WANG Yanxin. Single-well push-pull test in transient Forchheimer flow field[J]. Journal of Hydrology,2017,549:125 − 132. doi: 10.1016/j.jhydrol.2017.03.066

    [21]

    李旭,苏世林,文章,等. 单井注抽试验测算地下水流速的数值分析[J]. 地球科学,2022,47(2):633 − 641. [LI Xu,SU Shilin,WEN Zhang,et al. Numerical analysis of estimating groundwater velocity through single-well push-pull test[J]. Earth Science,2022,47(2):633 − 641. (in Chinese with English abstract)

    LI Xu, SU Shilin, WEN Zhang, et al. Numerical analysis of estimating groundwater velocity through single-well push-pull test[J]. Earth Science, 2022, 47(2): 633-641. (in Chinese with English abstract)

    [22]

    GELHAR L W,COLLINS M A. General analysis of longitudinal dispersion in nonuniform flow[J]. Water Resources Research,1971,7(6):1511 − 1521. doi: 10.1029/WR007i006p01511

    [23]

    HALL S H,LUTTRELL S P,CRONIN W E. A method for estimating effective porosity and ground-water velocity[J]. Ground Water,1991,29(2):171 − 174. doi: 10.1111/j.1745-6584.1991.tb00506.x

    [24]

    HAGGERTY R,SCHROTH M H,ISTOK J D. Simplified method of “push-pull” test data analysis for determining in situ reaction rate coefficients[J]. Ground Water,1998,36(2):314 − 324. doi: 10.1111/j.1745-6584.1998.tb01097.x

    [25]

    ISTOK J D,FIELD J A,SCHROTH M H,et al. Laboratory and field investigation of surfactant sorption using single-well,“push-pull” tests[J]. Ground Water,1999,37(4):589 − 598. doi: 10.1111/j.1745-6584.1999.tb01146.x

    [26]

    SCHROTH M H,ISTOK J D,HAGGERTY R. In situ evaluation of solute retardation using single-well push-pull tests[J]. Advances in Water Resources,2000,24(1):105 − 117. doi: 10.1016/S0309-1708(00)00023-3

    [27]

    TOMICH J F,DALTON R L,DEANS H A,et al. Single-well tracer method to measure residual oil saturation[J]. Journal of Petroleum Technology,1973,25(2):211 − 218. doi: 10.2118/3792-PA

    [28]

    HUANG Junqi,CHRIST J A,GOLTZ M N. Analytical solutions for efficient interpretation of single-well push-pull tracer tests[J]. Water Resources Research,2010,46(8):W08538.

    [29]

    DAVIS B M,ISTOK J D,SEMPRINI L. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination[J]. Journal of Contaminant Hydrology,2002,58(1/2):129 − 146.

    [30]

    DAVIS B M,ISTOK J D,SEMPRINI L. Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination using push-pull tests[J]. Journal of Contaminant Hydrology,2005,78(1/2):87 − 103.

    [31]

    AL-SHALABI E W,LUO Haishan,DELSHAD M,et al. Single-well chemical-tracer modeling of low-salinity-water injection in carbonates[J]. SPE Reservoir Evaluation & Engineering,2017,20(1):118 − 133.

    [32]

    陈梦佳,吴剑锋,孙晓敏,等. 地下水典型非水相液体污染运移模拟的尺度提升研究[J]. 水文地质工程地质,2020,47(1):11 − 18. [CHEN Mengjia,WU Jianfeng,SUN Xiaomin,et al. Upscaling of PCE transport modeling based on UTCHEM in heterogeneous porous media[J]. Hydrogeology & Engineering Geology,2020,47(1):11 − 18. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201901032

    CHEN Mengjia, WU Jianfeng, SUN Xiaomin, et al. Upscaling of PCE transport modeling based on UTCHEM in heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 11-18. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201901032

    [33]

    ARIS R. On the dispersion of linear kinematic waves[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1958,245:268 − 277.

    [34]

    CUNNINGHAM J A,ROBERTS P V. Use of temporal moments to investigate the effects of nonuniform grain-size distribution on the transport of sorbing solutes[J]. Water Resources Research,1998,34(6):1415 − 1425. doi: 10.1029/98WR00702

    [35]

    张国俊,孟洪,薛峰,等. TCE/PCE的DNAPL污染及零价铁墙防治技术[J]. 环境污染治理技术与设备,2006(4):12 − 18. [ZHANG Guojun,MENG Hong,XUE Feng,et al. TCE/PCE DNAPL pollution and zero-valent iron technology[J]. Techniques and Equipment for Environmental Pollution Control,2006(4):12 − 18. (in Chinese with English abstract)

    ZHANG Guojun, MENG Hong, XUE Feng, et al. TCE/PCE DNAPL pollution and zero-valent iron technology[J]. Techniques and Equipment for Environmental Pollution Control, 2006(4): 12-18. (in Chinese with English abstract)

    [36]

    程洲,吴吉春,徐红霞,等. DNAPL在透镜体及表面活性剂作用下的运移研究[J]. 中国环境科学,2014,34(11):2888 − 2896. [CHENG Zhou,WU Jichun,XU Hongxia,et al. Investigation of the migration characteristic of DNAPL in aquifer with lenses and under the action of surfactant flushing[J]. China Environmental Science,2014,34(11):2888 − 2896. (in Chinese with English abstract)

    CHENG Zhou, WU Jichun, XU Hongxia, et al. Investigation of the migration characteristic of DNAPL in aquifer with lenses and under the action of surfactant flushing[J]. China Environmental Science, 2014, 34(11): 2888-2896. (in Chinese with English abstract)

  • 加载中

(7)

(4)

计量
  • 文章访问数:  1558
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2022-08-18
修回日期:  2022-09-23
刊出日期:  2023-07-15

目录