孔隙环境特征对高岭土超声波波速影响机理研究

金李皓琳, 张敏, 苑成旺, 王占. 孔隙环境特征对高岭土超声波波速影响机理研究[J]. 水文地质工程地质, 2023, 50(5): 89-95. doi: 10.16030/j.cnki.issn.1000-3665.202209011
引用本文: 金李皓琳, 张敏, 苑成旺, 王占. 孔隙环境特征对高岭土超声波波速影响机理研究[J]. 水文地质工程地质, 2023, 50(5): 89-95. doi: 10.16030/j.cnki.issn.1000-3665.202209011
JIN Lihaolin, ZHANG Min, YUAN Chengwang, WANG Zhan. Influence mechanism of pore environment characteristics on ultrasonic wave velocity of kaolin[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 89-95. doi: 10.16030/j.cnki.issn.1000-3665.202209011
Citation: JIN Lihaolin, ZHANG Min, YUAN Chengwang, WANG Zhan. Influence mechanism of pore environment characteristics on ultrasonic wave velocity of kaolin[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 89-95. doi: 10.16030/j.cnki.issn.1000-3665.202209011

孔隙环境特征对高岭土超声波波速影响机理研究

  • 基金项目: 吉林省自然科学基金项目(20220101166JC)
详细信息
    作者简介: 金李皓琳(1999-),女,硕士研究生,主要从事岩土体力学性质研究。E-mail:jlhl21@mails.jlu.edu.cn
    通讯作者: 张敏(1986-),女,博士,副教授,主要从事地质灾害防控及岩土体力学分析研究。E-mail:minzhang@jlu.edu.cn
  • 中图分类号: TU442

Influence mechanism of pore environment characteristics on ultrasonic wave velocity of kaolin

More Information
  • 高岭土是工程中常见的黏性土体,其微观结构对孔隙环境的变化十分敏感。目前针对高岭土孔隙环境特征与声波波速关系的研究还有待深入。基于超声波测试理论,采用RSM-SY6超声波检测仪,研究了不同孔隙环境条件下,高岭土超声波波速的变化规律,并从黏土颗粒的排列方式及其与孔隙溶液的相互作用等微观角度,分析了孔隙环境特征对高岭土超声波波速的影响机理,为超声波检测技术在土体中的应用提供了一定的理论依据。结果表明:(1)孔隙比越大,高岭土超声波波速越低;(2)随着含水率的增加,高岭土超声波波速先小幅度降低,后大幅度升高;(3)孔隙溶液酸碱度对高岭土超声波波速的影响与边缘等电pH值有关,当孔隙溶液pH值等于边缘等电pH值时,超声波波速最大;(4)盐分的加入使高岭土超声波波速降低,当盐溶液浓度在0~0.5 mol/L时,波速下降最快。相同阴离子条件下,高价阳离子对超声波波速的降低作用更明显。研究结果可为黏性土体声学特性研究提供参考,同时也为超声波检测技术在土体中的应用提供了 一定的理论依据。

  • 加载中
  • 图 1  高岭土超声波波速测试

    Figure 1. 

    图 2  高岭土超声波波速与孔隙盐溶液浓度的关系曲线

    Figure 2. 

    图 3  高岭土黏土颗粒间的3种接触方式示意图

    Figure 3. 

    表 1  高岭土孔隙比与超声波波速

    Table 1.  Void ratio and ultrasonic wave velocity of kaolin

    参数取值 孔隙比
    0.89 0.93 0.97 1.08 1.20 1.32
    波速/(km·s−1 1.110 1.080 1.030 0.975 0.901 0.864
    下载: 导出CSV

    表 2  高岭土含水率与超声波波速

    Table 2.  Water content and ultrasonic wave velocity of kaolin

    参数取值 含水率/%
    3.41 8.93 14.50 21.20 23.40 27.63 33.72
    波速/(km·s−1 1.210 1.030 0.897 1.003 1.178 1.531 1.977
    下载: 导出CSV

    表 3  高岭土孔隙溶液pH值与超声波波速

    Table 3.  Pore solution pH value and ultrasonic wave velocity of kaolin

    参数取值 pH值
    1 2 3 4 5 6 7 8 9 10 11 12
    波速/(km·s−1 1.010 1.017 1.028 1.036 1.040 1.035 1.032 1.028 1.027 1.017 0.980 0.970
    下载: 导出CSV
  • [1]

    刘建刚,刘明玮,牛传业. 声呐之所以不能用来进行渗流测试之我见[J]. 水文地质工程地质,2022,49(5):214 − 216. [LIU Jiangang,LIU Mingwei,NIU Chuanye. My opinion on why sonar can’t be used for seepage test[J]. Hydrogeology & Engineering Geology,2022,49(5):214 − 216. (in Chinese with English abstract)

    LIU Jiangang, LIU Mingwei, NIU Chuanye. My opinion on why sonar can’t be used for seepage test[J]. Hydrogeology & Engineering Geology, 2022, 495): 214216. (in Chinese with English abstract)

    [2]

    STEPHENSON R W. Ultrasonic testing for determining dynamic soil moduli[M]//American Society for Testing and Materials. Dynamic Geotechnical Testing. West Conshohocken,PA:ASTM International,1978:179 – 195.

    [3]

    ALBA P D,BALDWIN K,CELIKKOL B,et al. Elastic-wave velocities and liquefaction potential[J]. Geotechnical Testing Journal,1984,7(2):77 − 88. doi: 10.1520/GTJ10596J

    [4]

    王大雁,朱元林,马巍,等. 冻土超声波波速与冻土物理力学性质试验研究[J]. 岩石力学与工程学报,2003,22(11):1837 − 1840. [WANG Dayan,ZHU Yuanlin,MA Wei,et al. Testing study on relationship between ultrasonic wave velocities and physico-mechanical property of frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1837 − 1840. (in Chinese with English abstract)

    WANG Dayan, ZHU Yuanlin, MA Wei, et al. Testing study on relationship between ultrasonic wave velocities and physico-mechanical property of frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 2211): 18371840. (in Chinese with English abstract)

    [5]

    韦秉旭,龚树,刘斌,等. 膨胀土细观结构变化及与声波波速的关系[J]. 长江科学院院报,2016,33(9):93 − 97. [WEI Bingxu,GONG Shu,LIU Bin,et al. Changes of expansive soil’s meso-structure and its relation with acoustic velocity[J]. Journal of Yangtze River Scientific Research Institute,2016,33(9):93 − 97. (in Chinese with English abstract)

    WEI Bingxu, GONG Shu, LIU Bin, et al. Changes of expansive soil’s meso-structure and its relation with acoustic velocity[J]. Journal of Yangtze River Scientific Research Institute, 2016, 339): 9397. (in Chinese with English abstract)

    [6]

    刘鹏,韦秉旭,欧阳运清,等. 膨胀土纵波波速与裂隙率关系试验[J]. 长沙理工大学学报(自然科学版),2016,13(3):12 − 18. [LIU Peng,WEI Bingxu,OUYANG Yunqing,et al. The longitudinal wave velocity of expansive soil and experimental study of the relationship between fracture rate[J]. Journal of Changsha University of Science & Technology (Natural Science),2016,13(3):12 − 18. (in Chinese with English abstract)

    LIU Peng, WEI Bingxu, OUYANG Yunqing, et al. The longitudinal wave velocity of expansive soil and experimental study of the relationship between fracture rate[J]. Journal of Changsha University of Science & Technology (Natural Science), 2016, 133): 1218. (in Chinese with English abstract)

    [7]

    李君,徐岩,姜锐,等. 超声波土壤含水量检测装置的模型建立与验证[J]. 农业工程学报,2017,33(13):127 − 133. [LI Jun,XU Yan,JIANG Rui,et al. Establishment and verification of model for ultrasonic soil water content detector[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(13):127 − 133. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2017.13.017

    LI Jun, XU Yan, JIANG Rui, et al. Establishment and verification of model for ultrasonic soil water content detector[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 3313): 127133. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2017.13.017

    [8]

    张智,周黎明,徐涛,等. 膨胀土力学特性参数的声-电响应特征分析[J]. 人民长江,2022,53(10):183 − 188. [ZHANG Zhi,ZHOU Liming,XU Tao,et al. Analysis on acoustic-electrical response characteristics of mechanical parameters of expansive soil[J]. Yangtze River,2022,53(10):183 − 188. (in Chinese with English abstract)

    ZHANG Zhi, ZHOU Liming, XU Tao, et al. Analysis on acoustic-electrical response characteristics of mechanical parameters of expansive soil[J]. Yangtze River, 2022, 5310): 183188. (in Chinese with English abstract)

    [9]

    罗津辉,蔡忠理. 高岭土容重、含水量、结构特性与声波速度及动力学参数相关性的实验研究[J]. 岩土力学,1991,12(2):75 − 80. [LUO Jinhui,CAI Zhongli. Experimental study on the correlativity between physical-structrual characteristics and wave velocities in kaolinite[J]. Rock and Soil Mechanics,1991,12(2):75 − 80. (in Chinese with English abstract)

    LUO Jinhui, CAI Zhongli. Experimental study on the correlativity between physical-structrual characteristics and wave velocities in kaolinite[J]. Rock and Soil Mechanics, 1991, 122): 7580. (in Chinese with English abstract)

    [10]

    DING Wuquan,LIU Xinmin,HU Feinan,et al. How the particle interaction forces determine soil water infiltration:Specific ion effects[J]. Journal of Hydrology,2019,568:492 − 500. doi: 10.1016/j.jhydrol.2018.11.017

    [11]

    MITCHELL J K. Components of pore water pressure and their engineering significance[C]//INGERSON E. Clays and Clay Minerals-Proceeding of the Ninth National Conference on Clays and Clay Mineerals. Amsterdam:Elsevier,1962:162 − 184.

    [12]

    KAYA A,ÖREN A H,YÜKSELEN Y. Settling of kaolinite in different aqueous environment[J]. Marine Georesources & Geotechnology,2006,24(3):203 − 218.

    [13]

    WANG Yuxing,SIU W K. Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations[J]. Canadian Geotechnical Journal,2006,43(6):587 − 600. doi: 10.1139/t06-026

    [14]

    于海浩,韦昌富,颜荣涛,等. 孔隙溶液浓度的变化对黏土强度的影响[J]. 岩土工程学报,2015,37(3):564 − 569. [YU Haihao,WEI Changfu,YAN Rongtao,et al. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering,2015,37(3):564 − 569. (in Chinese with English abstract) doi: 10.11779/CJGE201503023

    YU Haihao, WEI Changfu, YAN Rongtao, et al. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 373): 564569. (in Chinese with English abstract) doi: 10.11779/CJGE201503023

    [15]

    LIU Di,EDRAKI M,BERRY L. Investigating the settling behaviour of saline tailing suspensions using kaolinite,bentonite,and illite clay minerals[J]. Powder Technology,2018,326:228 − 236. doi: 10.1016/j.powtec.2017.11.070

    [16]

    康馨,苏晨曦,陈仁朋,等. 不同水化环境下高岭土微观结构各向异性研究[J]. 湖南大学学报(自然科学版),2023,50(1):161 − 170. [KANG Xin,SU Chenxi,CHEN Renpeng,et al. Study on microstructure anisotropy of kaolin under different hydration environments[J]. Journal of Hunan University (Natural Sciences),2023,50(1):161 − 170. (in Chinese with English abstract)

    KANG Xin, SU Chenxi, CHEN Renpeng, et al. Study on microstructure anisotropy of kaolin under different hydration environments[J]. Journal of Hunan University (Natural Sciences), 2023, 501): 161170. (in Chinese with English abstract)

    [17]

    杨德欢. 孔隙水溶液对高岭土变形特性的影响机理[D]. 桂林:桂林理工大学,2016. [YANG Dehuan. Influencing mechanism of pore water chemistry on volume change behavior of kaolinite[D]. Guilin:Guilin University of Technology,2016. (in Chinese with English abstract)

    YANG Dehuan. Influencing mechanism of pore water chemistry on volume change behavior of kaolinite[D]. Guilin: Guilin University of Technology, 2016. (in Chinese with English abstract)

    [18]

    中华人民共和国住房和城乡建设部. 土工试验方法 标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [19]

    张丹,晏鄂川,梁风. 红黏土物理力学性质与声波波速关系的初步研究[J]. 安全与环境工程,2019,26(2):190 − 194. [ZHANG Dan,YAN E’chuan,LIANG Feng. Preliminary research on the relationship between physical and mechanical properties of red clay and acoustic wave velocity[J]. Safety and Environmental Engineering,2019,26(2):190 − 194. (in Chinese with English abstract)

    ZHANG Dan, YAN E’chuan, LIANG Feng. Preliminary research on the relationship between physical and mechanical properties of red clay and acoustic wave velocity[J]. Safety and Environmental Engineering, 2019, 262): 190194. (in Chinese with English abstract)

    [20]

    郭守国,何斌. 非金属矿产开发利用[M]. 武汉:中国地质大学出版社,1991:219 – 271. [GUO Shouguo,He Bin. Development and utilization of nonmetallic minerals[M]. Wuhan:China University of Geosciences Press,1991:219 – 271. (in Chinese)

    GUO Shouguo, He Bin. Development and utilization of nonmetallic minerals[M]. Wuhan: China University of Geosciences Press, 1991: 219 – 271. (in Chinese)

    [21]

    王峥辉. 下蜀黄土超声波波速与物理力学性质试验研究[D]. 南京:河海大学,2007. [WANG Zhenghui. Testing study on relationship among P-wave velocity and physico-mechanical in Xiashu loess[D]. Nanjing:Hohai University,2007. (in Chinese with English abstract)

    WANG Zhenghui. Testing study on relationship among P-wave velocity and physico-mechanical in Xiashu loess[D]. Nanjing: Hohai University, 2007. (in Chinese with English abstract)

    [22]

    刘佳婷,付昱凯,李同录,等. 黄土与其矿物颗粒表面水膜类型及其定量表征[J]. 水文地质工程地质,2022,49(6):105 − 113. [LIU Jiating,FU Yukai,LI Tonglu,et al. Types of water film on the surface of loess and related mineral particles and their quantitative characterization[J]. Hydrogeology & Engineering Geology,2022,49(6):105 − 113. (in Chinese with English abstract)

    LIU Jiating, FU Yukai, LI Tonglu, et al. Types of water film on the surface of loess and related mineral particles and their quantitative characterization[J]. Hydrogeology & Engineering Geology, 2022, 496): 105113. (in Chinese with English abstract)

    [23]

    李强,李同录,李华,等. 毛细水作用下非饱和土压缩过程的微观非连续变形数值分析[J]. 水文地质工程地质,2022,49(4):135 − 143. [LI Qiang,LI Tonglu,LI Hua,et al. Numerical analysis of evolution of the unsaturated soil microstructure with capillary action during compression[J]. Hydrogeology & Engineering Geology,2022,49(4):135 − 143. (in Chinese with English abstract)

    LI Qiang, LI Tonglu, LI Hua, et al. Numerical analysis of evolution of the unsaturated soil microstructure with capillary action during compression[J]. Hydrogeology & Engineering Geology, 2022, 494): 135143. (in Chinese with English abstract)

    [24]

    孟祥波. 土质与土力学[M]. 北京:人民交通出版社,2002:12 – 13. [MENG Xiangbo. Soil quality and soil mechanics[M]. Beijing:China Communications Press,2002:12 – 13. (in Chinese)

    MENG Xiangbo. Soil quality and soil mechanics[M]. Beijing: China Communications Press, 2002: 12 – 13. (in Chinese)

    [25]

    曾立峰,邵龙潭,牛庚,等. 考虑孔隙水微观赋存形态的非饱和粉土有效应力方程及其验证[J]. 水文地质工程地质,2022,49(4):37 − 46. [ZENG Lifeng,SHAO Longtan,NIU Geng,et al. An effective stress equation for unsaturated silt considering the microstructure of pore water and its verification[J]. Hydrogeology & Engineering Geology,2022,49(4):37 − 46. (in Chinese with English abstract)

    ZENG Lifeng, SHAO Longtan, NIU Geng, et al. An effective stress equation for unsaturated silt considering the microstructure of pore water and its verification[J]. Hydrogeology & Engineering Geology, 2022, 494): 3746. (in Chinese with English abstract)

    [26]

    常锦,杨和平,肖杰,等. 酸性环境对百色膨胀土胀缩性能的影响及其微观解释[J]. 交通运输工程学报,2019,19(1):24 − 32. [CHANG Jin,YANG Heping,XIAO Jie,et al. Effect of acid environment on swelling-shrinkage properties of Baise expansive soil and its microscopic interpretation[J]. Journal of Traffic and Transportation Engineering,2019,19(1):24 − 32. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1637.2019.01.004

    CHANG Jin, YANG Heping, XIAO Jie, et al. Effect of acid environment on swelling-shrinkage properties of Baise expansive soil and its microscopic interpretation[J]. Journal of Traffic and Transportation Engineering, 2019, 191): 2432. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1637.2019.01.004

    [27]

    BRAGGS B,FORNASIERO D,RALSTON J,et al. The effect of surface modification by an organosilane on the electrochemical properties of kaolinite[J]. Clays and Clay Minerals,1994,42(2):123 − 136. doi: 10.1346/CCMN.1994.0420203

    [28]

    常锦,杨和平,肖杰,等. 酸雨湿干循环作用下百色膨胀土裂隙发育规律及其微观机制[J]. 中国公路学报,2021,34(1):47 − 56. [CHANG Jin,YANG Heping,XIAO Jie,et al. Fissure development law and micro-mechanism of Baise expansive soil under wet-dry cycles of acid rain[J]. China Journal of Highway and Transport,2021,34(1):47 − 56. (in Chinese with English abstract)

    CHANG Jin, YANG Heping, XIAO Jie, et al. Fissure development law and micro-mechanism of Baise expansive soil under wet-dry cycles of acid rain[J]. China Journal of Highway and Transport, 2021, 341): 4756. (in Chinese with English abstract)

    [29]

    KANG Xin,XIA Zhao,CHEN Renpeng,et al. Effects of inorganic cations and organic polymers on the physicochemical properties and microfabrics of kaolinite suspensions[J]. Applied Clay Science,2019,176:38 − 48. doi: 10.1016/j.clay.2019.04.024

    [30]

    MA Kunsong,PIERRE A C. Clay sediment-structure formation in aqueous kaolinite suspensions[J]. Clays and Clay Minerals,1999,47(4):522 − 526. doi: 10.1346/CCMN.1999.0470415

    [31]

    CHEN Jie,ANANDARAJAH A. Influence of pore fluid composition on volume of sediments in kaolinite suspensions[J]. Clays and Clay Minerals,1998,46(2):145 − 152. doi: 10.1346/CCMN.1998.0460204

  • 加载中

(3)

(3)

计量
  • 文章访问数:  873
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2022-09-06
修回日期:  2022-12-29
刊出日期:  2023-09-15

目录