黏土结构性对孔压静力触探结果的影响分析

加瑞, 赵栋, 雷华阳. 黏土结构性对孔压静力触探结果的影响分析[J]. 水文地质工程地质, 2023, 50(5): 80-88. doi: 10.16030/j.cnki.issn.1000-3665.202209055
引用本文: 加瑞, 赵栋, 雷华阳. 黏土结构性对孔压静力触探结果的影响分析[J]. 水文地质工程地质, 2023, 50(5): 80-88. doi: 10.16030/j.cnki.issn.1000-3665.202209055
JIA Rui, ZHAO Dong, LEI Huayang. An analysis of the influence of clay structure on piezocone penetration test results[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 80-88. doi: 10.16030/j.cnki.issn.1000-3665.202209055
Citation: JIA Rui, ZHAO Dong, LEI Huayang. An analysis of the influence of clay structure on piezocone penetration test results[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 80-88. doi: 10.16030/j.cnki.issn.1000-3665.202209055

黏土结构性对孔压静力触探结果的影响分析

  • 基金项目: 天津市科技计划项目(21JCYBJC00380);国家自然科学基金重大项目(51890911)
详细信息
    作者简介: 加瑞(1982-),男,博士,副教授,主要从事岩土与地下工程方面的教学与科研工作。E-mail:jiarui@tju.edu.cn
  • 中图分类号: TU442

An analysis of the influence of clay structure on piezocone penetration test results

  • 针对目前黏土结构性对孔压静力触探结果的影响及其机理尚不是很清楚的问题,首先在ABAQUS软件中对结构性剑桥模型进行了程序实现,然后建立了孔压静力触探贯入结构性黏土的数值模型,通过数值计算分析了黏土结构性对孔压静力触探结果的影响。数值计算结果表明:(1)黏土的结构性会导致锥尖周围土体的偏应力增大,由于锥尖附近土体的结构性损伤,最大偏应力出现在距锥尖一定距离的右下方;(2)表征结构性强度的参数——初始结构屈服应力$ p{\text{'}}_{ {\rm{yi}}} $越大,锥尖阻力qc越大,而表征结构性损伤速度的参数——结构性对流动法则影响参数ω越大,qc值越小;(3)$p\text{'}_{ {\rm{yi}}} $值越大,贯入停止时的超静孔隙水压力u越大,而ω值越大,贯入停止时的u值越小;(4)经验圆锥系数Nkt随$p\text{'}_{ {\rm{yi}}} $增大明显减小,随ω的增大略有减小。因此,黏土的结构性强度及其损伤会明显影响孔压静力触探的测量结果,基于锥尖阻力qc估算结构性黏土的不排水抗剪强度su时应采用考虑结构性影响的经验圆锥系数Nkt,否则将会低估结构性黏土的su。研究结果可为孔压静力触探结果的分析和应用提供参考。

  • 加载中
  • 图 1  不同单元试验的数值模拟与公式计算结果

    Figure 1. 

    图 2  模拟CPTU贯入的数值模型简图

    Figure 2. 

    图 3  不同结构性参数时的qc随深度变化图

    Figure 3. 

    图 4  不同结构性参数时u的消散曲线

    Figure 4. 

    图 5  结构性参数对Nkt的影响

    Figure 5. 

    图 6  贯入到0.5 m深度时的偏应力分布

    Figure 6. 

    图 7  距锥尖不同距离单元的偏应力和偏应变

    Figure 7. 

    图 8  离锥尖不同距离土体偏应变和剪应力

    Figure 8. 

    表 1  结构性剑桥模型参数

    Table 1.  Structured cam-clay model parameters

    参数 M λ κ E/kPa eIC υ b ω γ $\sigma\text{'}_ {{\rm{vyi}}} $/kPa $p\text{'}_ {{\rm{yi}}} $/kPa
    侧限压缩试验 1.50 0.505 0.020 0 5.383 0.7 0.5 430
    三轴固结排水试验 1.50 0.208 76 923 2.383 0.13 30.0 4 2.1 2 400.0
    三轴固结不排水试验 1.28 0.355 0.047 7 2.910 0.25 1.0 1 0.5 57.5
    CPTU贯入模拟 1.50 0.300 0.050 0 3.770 0.30 5.0 1 1.0 250.0
      注:E为弹性模量; eIC为重塑土正常固结曲线上p' = 1 kPa时的孔隙比;$\sigma \text{'}_ { {\rm{vyi} } }$为一维固结试验中的竖向屈服有效应力;“—”表示参数不需要设置。
    下载: 导出CSV
  • [1]

    LUNNE T,ROBERTSON P K,POWELL J J M. Cone penetration testing in geotechnical practice[M]. London:Blackie Academic & Professional,1997.

    [2]

    刘松玉,蔡国军,童立元. 现代多功能CPTU技术理论与工程应用[M]. 北京:科学出版社,2013. [LIU Songyu,CAI Guojun,TONG Liyuan. Theory and engineering application of modern multifunctional CPTU technology[M]. Beijing:Science Press,2013. (in Chinese)

    LIU Songyu, CAI Guojun, TONG Liyuan. Theory and engineering application of modern multifunctional CPTU technology[M]. Beijing: Science Press, 2013. (in Chinese)

    [3]

    ROBERTSON P K. Soil classification using the cone penetration test[J]. Canadian Geotechnical Journal,1990,27(1):151 − 158. doi: 10.1139/t90-014

    [4]

    邱敏,宋友建,丛璐,等. 基于层次聚类算法的孔压静力触探土体分类方法及试验研究[J]. 水文地质工程地质,2019,46(3):117 − 123. [QIU Min,SONG Youjian,CONG Lu,et al. Soil classification method and experimental research on CPTU based on the hierarchical clustering algorithm[J]. Hydrogeology & Engineering Geology,2019,46(3):117 − 123. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.03.16

    QIU Min, SONG Youjian, CONG Lu, et al. Soil classification method and experimental research on CPTU based on the hierarchical clustering algorithm[J]. Hydrogeology & Engineering Geology, 2019, 463): 117123. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.03.16

    [5]

    SINGH V K,CHUNG S G. Evaluation of overconsolidation ratios from laboratory and in situ tests on Busan clay[J]. Engineering Geology,2015,199:38 − 47. doi: 10.1016/j.enggeo.2015.10.006

    [6]

    刘晓燕,蔡国军,邹海峰,等. 基于CPTU数据融合技术的黏性土应力历史与强度特性评价研究[J]. 岩土工程学报,2019,41(7):1270 − 1278. [LIU Xiaoyan,CAI Guojun,ZOU Haifeng,et al. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering,2019,41(7):1270 − 1278. (in Chinese with English abstract)

    LIU Xiaoyan, CAI Guojun, ZOU Haifeng, et al. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 417): 12701278. (in Chinese with English abstract)

    [7]

    刘松玉,蔡正银. 土工测试技术发展综述[J]. 土木工程学报,2012,45(3):151 − 165. [LIU Songyu,CAI Zhengyin. Review of the geotechnical testing[J]. China Civil Engineering Journal,2012,45(3):151 − 165. (in Chinese with English abstract) doi: 10.15951/j.tmgcxb.2012.03.002

    LIU Songyu, CAI Zhengyin. Review of the geotechnical testing[J]. China Civil Engineering Journal, 2012, 453): 151165. (in Chinese with English abstract) doi: 10.15951/j.tmgcxb.2012.03.002

    [8]

    CAI G J,LIU S Y,TONG L Y,et al. Field evaluation of undrained shear strength from piezocone penetration tests in soft marine clay[J]. Marine Georesources & Geotechnology,2010,28(2):143 − 153.

    [9]

    CHAI Jinchun,HOSSAIN M J,YUAN Dajun,et al. Pore pressures induced by piezocone penetration[J]. Canadian Geotechnical Journal,2016,53(3):540 − 550. doi: 10.1139/cgj-2015-0206

    [10]

    CECCATO F,SIMONINI P. Numerical study of partially drained penetration and pore pressure dissipation in piezocone test[J]. Acta Geotechnica,2017,12(1):195 − 209. doi: 10.1007/s11440-016-0448-6

    [11]

    孙广利,李广杰,周景宏,等. 长春硬塑状态老黏性土地基承载力[J]. 吉林大学学报(地球科学版),2014,44(2):591 − 595. [SUN Guangli,LI Guangjie,ZHOU Jinghong,et al. Foundation bearing capacity of Changchun hard plastic old clay[J]. Journal of Jilin University(Earth Science Edition),2014,44(2):591 − 595. (in Chinese with English abstract)

    SUN Guangli, LI Guangjie, ZHOU Jinghong, et al. Foundation bearing capacity of Changchun hard plastic old clay[J]. Journal of Jilin University(Earth Science Edition), 2014, 442): 591595. (in Chinese with English abstract)

    [12]

    苏亮,时伟,水伟厚,等. 高能级强夯法处理深厚吹填砂土地基现场试验[J]. 吉林大学学报(地球科学版),2021,51(5):1560 − 1569. [SU Liang,SHI Wei,SHUI Weihou,et al. Filed test of high energy dynamic compaction on hydraulic sandy filling[J]. Journal of Jilin University(Earth Science Edition),2021,51(5):1560 − 1569. (in Chinese with English abstract)

    SU Liang, SHI Wei, SHUI Weihou, et al. Filed test of high energy dynamic compaction on hydraulic sandy filling[J]. Journal of Jilin University(Earth Science Edition), 2021, 515): 15601569. (in Chinese with English abstract)

    [13]

    ROBERTSON P K. Interpretation of cone penetration tests—A unified approach[J]. Canadian Geotechnical Journal,2009,46(11):1337 − 1355. doi: 10.1139/T09-065

    [14]

    么玉鹏,姚坚毅,唐世雄. 珠江口地区岩土层工程地质特征及物理力学性质研究[J]. 水文地质工程地质,2022,49(2):64 − 70. [YAO Yupeng,YAO Jianyi,TANG Shixiong. A study of the engineering geological characteristics and physicomechanical property of rock and soil layers in the Pearl River Mouth area[J]. Hydrogeology & Engineering Geology,2022,49(2):64 − 70. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202106046

    YAO Yupeng, YAO Jianyi, TANG Shixiong. A study of the engineering geological characteristics and physicomechanical property of rock and soil layers in the Pearl River Mouth area[J]. Hydrogeology & Engineering Geology, 2022, 492): 6470. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202106046

    [15]

    杨爱武,郑宇轩,肖敏. 人工制备结构性软黏土长期变形特性试验研究[J]. 水文地质工程地质,2019,46(2):133 − 140. [YANG Aiwu,ZHENG Yuxuan,XIAO Min. An experimental study of the long-term deformation characteristics of artificial structured soft clay[J]. Hydrogeology & Engineering Geology,2019,46(2):133 − 140. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.02.18

    YANG Aiwu, ZHENG Yuxuan, XIAO Min. An experimental study of the long-term deformation characteristics of artificial structured soft clay[J]. Hydrogeology & Engineering Geology, 2019, 462): 133140. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.02.18

    [16]

    JIA Rui,ZHENG Gang,LEI Huayang,et al. The effects of the depositional environment and post-depositional processes on the engineering properties of Quaternary clays in the Saga Plain[J]. Bulletin of Engineering Geology and the Environment,2020,79(3):1137 − 1152. doi: 10.1007/s10064-019-01653-5

    [17]

    杨爱武,王斌彬,钟晓凯. 冻融作用下污泥固化轻质土动力特性及结构演化[J]. 水文地质工程地质,2022,49(1):57 − 65. [YANG Aiwu,WANG Binbin,ZHONG Xiaokai. Dynamic and structural characteristics of sludge solidified light soil under freezing-thawing action[J]. Hydrogeology & Engineering Geology,2022,49(1):57 − 65. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202103013

    YANG Aiwu, WANG Binbin, ZHONG Xiaokai. Dynamic and structural characteristics of sludge solidified light soil under freezing-thawing action[J]. Hydrogeology & Engineering Geology, 2022, 491): 5765. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202103013

    [18]

    曹海莹,郭毅磊,杜量. 动、静载环境下界面土直剪试验[J]. 吉林大学学报(地球科学版),2021,51(5):1381 − 1390. [CAO Haiying,GUO Yilei,DU Liang. Direct shear test of soil interfacial layer under dynamic and static losd[J]. Journal of Jilin University(Earth Science Edition),2021,51(5):1381 − 1390. (in Chinese with English abstract)

    CAO Haiying, GUO Yilei, DU Liang. Direct shear test of soil interfacial layer under dynamic and static losd[J]. Journal of Jilin University(Earth Science Edition), 2021, 515): 13811390. (in Chinese with English abstract)

    [19]

    LEE M J,CHOO H,KIM J,et al. Effect of artificial cementation on cone tip resistance and small strain shear modulus of sand[J]. Bulletin of Engineering Geology and the Environment,2011,70:193 − 201. doi: 10.1007/s10064-010-0312-0

    [20]

    GOMEZ M G,DEJONG J T,ANDERSON C M. Effect of bio-cementation on geophysical and cone penetration measurements in sands[J]. Canadian Geotechnical Journal,2018,55(11):1632 − 1646. doi: 10.1139/cgj-2017-0253

    [21]

    张先伟,孔令伟,郭爱国,等. 强结构性对湛江黏土地区CPTU原位测定结果的影响[J]. 工程力学,2013,30(2):118 − 124. [ZHANG Xianwei,KONG Lingwei,GUO Aiguo,et al. Effect of strong structure on CPTU test results of Zhanjiang clay area[J]. Engineering Mechanics,2013,30(2):118 − 124. (in Chinese with English abstract) doi: 10.6052/j.issn.1000-4750.2011.07.0447

    ZHANG Xianwei, KONG Lingwei, GUO Aiguo, et al. Effect of strong structure on CPTU test results of Zhanjiang clay area[J]. Engineering Mechanics, 2013, 302): 118124. (in Chinese with English abstract) doi: 10.6052/j.issn.1000-4750.2011.07.0447

    [22]

    LIYANAPATHIRANA D S,CARTER J P,AIREY D W. Analysis of cone penetration using the structured Cam Clay model[C]//Auckland:Proceedings of the 9th Australia New Zealand Conference in Geomechanics,2004,1:295 − 301.

    [23]

    LIYANAPATHIRANA D S. Numerical simulation of deep penetration of a piezocone in a strain-softening clay[J]. International Journal of Geotechnical Engineering,2016,10(2):174 − 182. doi: 10.1080/19386362.2015.1105621

    [24]

    刘笋,蒋明镜,付昌,等. 结构性砂土静力触探试验离散元分析[J]. 岩土力学,2018,39(3):933 − 942. [LIU Sun,JIANG Mingjing,FU Chang,et al. Distinct element analysis of cone penetration tests in structured sand ground[J]. Rock and Soil Mechanics,2018,39(3):933 − 942. (in Chinese with English abstract) doi: 10.16285/j.rsm.2016.0659

    LIU Sun, JIANG Mingjing, FU Chang, et al. Distinct element analysis of cone penetration tests in structured sand ground[J]. Rock and Soil Mechanics, 2018, 393): 933942. (in Chinese with English abstract) doi: 10.16285/j.rsm.2016.0659

    [25]

    CARTER J P,LIU M D. Review of the structured Cam Clay model[M]//JERRY A Y,VICTOR N K. Soil constitutive models:Evaluation,selection,and calibration. Austin:American Society of Civil Engineers,2005:99 − 132.

    [26]

    赵栋. 土体结构性对孔压静力触探结果的影响及其机理研究[D]. 天津:天津大学,2022. [ZHAO Dong. Study on the influence of soil structure on piezocone penetration test results and its mechanism[D]. Tianjin:Tianjin University,2022. (in Chinese)

    ZHAO Dong. Study on the influence of soil structure on piezocone penetration test results and its mechanism[D]. Tianjin: Tianjin University, 2022. (in Chinese)

    [27]

    BURGHIGNOLI A,MILIZAANO S,SOCCODATO F M. The effect of bond degradation in cemented clayey soils[C]//EVANGELISTA A,PICARELLI L. The Geotechnics of Hard Soils-Soft Rocks. Rotterdam,Netherlands:A A Balkema Publishers,1998:465 − 472.

    [28]

    LAGIOIA R,NOVA R. An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression[J]. Géotechnique,1995,45(4):633 − 648.

    [29]

    ADACHI T,OKA F,HIRATA T,et al. Stress-strain behavior and yielding characteristics of eastern Osaka clay[J]. Soils and Foundations,1995,35(3):1 − 13. doi: 10.3208/sandf.35.1

    [30]

    CHAI Jinchun,SHENG Daichao,CARTER J P,et al. Coefficient of consolidation from non-standard piezocone dissipation curves[J]. Computers and Geotechnics,2012,41:13 − 22. doi: 10.1016/j.compgeo.2011.11.005

    [31]

    LIU M D,CARTER J P. A structured Cam Clay model[J]. Canadian Geotechnical Journal,2002,39(6):1313 − 1332. doi: 10.1139/t02-069

    [32]

    DI BUÒ B,D’IGNAZIO M,SELÄNPÄÄ J,et al. Yield stress evaluation of Finnish clays based on analytical piezocone penetration test (CPTU) models[J]. Canadian Geotechnical Journal,2020,57(11):1623 − 1638. doi: 10.1139/cgj-2019-0427

    [33]

    BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique,1990,40(3):329 − 378.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  768
  • PDF下载数:  54
  • 施引文献:  0
出版历程
收稿日期:  2022-09-25
修回日期:  2022-11-21
刊出日期:  2023-09-15

目录