典型黄土丘陵区地质灾害隐患识别与时序监测

尹玉玲, 徐素宁, 王军, 胡克. 典型黄土丘陵区地质灾害隐患识别与时序监测[J]. 水文地质工程地质, 2023, 50(2): 141-149. doi: 10.16030/j.cnki.issn.1000-3665.202211004
引用本文: 尹玉玲, 徐素宁, 王军, 胡克. 典型黄土丘陵区地质灾害隐患识别与时序监测[J]. 水文地质工程地质, 2023, 50(2): 141-149. doi: 10.16030/j.cnki.issn.1000-3665.202211004
YIN Yuling, XU Suning, WANG Jun, HU Ke. Identification and time series monitoring of hidden dangers of geological hazards in the typical loess hilly regions[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 141-149. doi: 10.16030/j.cnki.issn.1000-3665.202211004
Citation: YIN Yuling, XU Suning, WANG Jun, HU Ke. Identification and time series monitoring of hidden dangers of geological hazards in the typical loess hilly regions[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 141-149. doi: 10.16030/j.cnki.issn.1000-3665.202211004

典型黄土丘陵区地质灾害隐患识别与时序监测

  • 基金项目: 自然灾害防治体系建设补助资金遥感调查项目(NXYSDZC-2021-025);基于国产卫星的地质灾害调查监测系统研制与示范应用(发改办高技[2012]2083号)
详细信息
    作者简介: 尹玉玲(1998-),女,硕士研究生,主要从事资源与环境遥感研究工作。E-mail:1070348728@qq.com
    通讯作者: 徐素宁(1968-),女,教授级高工,主要从事地质环境遥感监测技术方法研究。E-mail:573014656@qq.com
  • 中图分类号: P694

Identification and time series monitoring of hidden dangers of geological hazards in the typical loess hilly regions

More Information
  • 宁厦南部地区以黄土丘陵地貌为主,区内沟壑纵横,小型滑坡较为发育,地表形变监测难度大。为探索黄土丘陵区的地质灾害隐患识别方法,以宁夏回族自治区固原市泾源县为研究区,应用SBAS-InSAR技术对采集到的2016年7月—2021年5月的11期升轨L波段ALOS-2数据进行处理,得到形变速率结果。联合高分光学影像,根据形变速率、形变规模、坡度、形变区到承灾体的距离等因素进行综合分析,在泾源县共识别疑似隐患27处。经实地验证,其中22处形变迹象较明显、而且有明确的承灾体,确定为地质灾害隐患。对其中典型隐患点进行时序形变分析,发现这些区域在监测时间段内有持续显著的地表形变,最大沉降速率达到91.53 mm/a。结果表明:在黄土丘陵区,应用L波段SAR数据,采用SBAS-InSAR技术的地质灾害形变监测效果显著,联合高分辨率的光学影像数据、应用综合遥感识别的方法,在该地区地质灾害隐患识别的正确率较高,具有很好的适用性。未来可编程采集升、降轨结合的L波段数据、结合无人机LiDAR数据做更深入的研究,以进一步提高地质灾害隐患识别的准确率,为地质灾害精准防治做好技术支撑。

  • 加载中
  • 图 1  泾源县地貌类型图

    Figure 1. 

    图 2  时空基线连接图

    Figure 2. 

    图 3  泾源县2016年7月28日—2021年5月27日地表形变速率图

    Figure 3. 

    图 4  泾源县形变区提取结果图

    Figure 4. 

    图 5  典型隐患点InSAR形变与光学影像对照图

    Figure 5. 

    图 6  泾源县地质灾害隐患点分布图

    Figure 6. 

    图 7  泾源县黄土滑坡特征野外验证照片

    Figure 7. 

    图 8  泾源县点e(640424090008)形变区累积形变量图

    Figure 8. 

    图 9  泾源县640424090008号形变区累积形变量折线图

    Figure 9. 

    图 10  泾源县点e(640424090008)号形变区历史影像图

    Figure 10. 

  • [1]

    胡胜. 黄土高原滑坡空间格局及其对地貌演化的影响[D]. 西安: 西北大学, 2019

    HU Sheng. Spatial pattern of landslide in Loess Plateau and its influence on geomorphologic evolution[D]. Xi’an: Northwest University, 2019. (in Chinese with English abstract)

    [2]

    XIAO Lihan, ZHENG Rui, ZOU Rong. Coseismic slip distribution of the 2021 Mw7.4 Maduo,Qinghai earthquake estimated from InSAR and GPS measurements[J]. Journal of Earth Science,2022,33(4):885 − 891. doi: 10.1007/s12583-022-1637-x

    [3]

    刘沛源,常鸣,武彬彬,等. 基于SBAS-InSAR技术的成汶高速汶川段滑坡易发区选线研究[J]. 地球科学,2022,47(6):2048 − 2057. [LIU Peiyuan,CHANG Ming,WU Binbin,et al. Route selection of landslide prone area in Wenchuan section of Chengdu-Wenchuan expressway based on SBAS-InSAR[J]. Earth Science,2022,47(6):2048 − 2057. (in Chinese with English abstract) doi: 10.3321/j.issn.1000-2383.2022.6.dqkx202206011

    [4]

    GRAHAM L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE,1974,62(6):763 − 768. doi: 10.1109/PROC.1974.9516

    [5]

    MASSONNET D,ROSSI M,CARMONA C,et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature,1993,364:138 − 142. doi: 10.1038/364138a0

    [6]

    MASSONNET D,BRIOLE P,ARNAUD A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J]. Nature,1995,375:567 − 570. doi: 10.1038/375567a0

    [7]

    GABRIEL A K,GOLDSTEIN R M,ZEBKER H A. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research,1989,94(B7):9183. doi: 10.1029/JB094iB07p09183

    [8]

    XIA Ye, KAUFMANN H, GUO Xiaofang. Differential SAR interferometry using corner reflectors[C]//IEEE International Geoscience and Remote Sensing Symposium. Toronto, Canada: IEEE, 2002: 1243-1246.

    [9]

    褚宏亮,邢顾莲,李昆仲,等. 基于地面三维激光扫描的三峡库区危岩体监测[J]. 水文地质工程地质,2021,48(4):124 − 132. [CHU Hongliang,XING Gulian,LI Kunzhong,et al. Monitoring of dangerous rock mass in the Three Gorges Reservoir area based on the terrestrial laser scanning method[J]. Hydrogeology & Engineering Geology,2021,48(4):124 − 132. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202008015

    [10]

    卫童瑶,殷跃平,高杨,等. 三峡库区巫山县塔坪H1滑坡变形机制[J]. 水文地质工程地质,2020,47(4):73 − 81. [WEI Tongyao,YIN Yueping,GAO Yang,et al. Deformation mechanism of the Taping H1 landslide in Wushan County in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology,2020,47(4):73 − 81. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202003043

    [11]

    陆会燕,李为乐,许强,等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版),2019,44(9):1342 − 1354. [LU Huiyan,LI Weile,XU Qiang,et al. Early detection of landslides in the upstream and downstream areas of the baige landslide,the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University,2019,44(9):1342 − 1354. (in Chinese with English abstract)

    [12]

    LIU Xiaojie,ZHAO Chaoying,ZHANG Qin,et al. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor,China[J]. Engineering Geology,2021,284:106033. doi: 10.1016/j.enggeo.2021.106033

    [13]

    解明礼,赵建军,巨能攀,等. 多源数据滑坡时空演化规律研究—以黄泥坝子滑坡为例[J]. 武汉大学学报(信息科学版),2020,45(6):923 − 932. [XIE Mingli,ZHAO Jianjun,JU Nengpan,et al. Research on temporal and spatial evolution of landslide based on multisource data:A case study of Huangnibazi landslide[J]. Geomatics and Information Science of Wuhan University,2020,45(6):923 − 932. (in Chinese with English abstract)

    [14]

    王志荣,吴玮江,周自强. 甘肃黄土台塬区农业过量灌溉引起的滑坡灾害[J]. 中国地质灾害与防治学报,2004,15(3):43 − 46. [WANG Zhirong,WU Weijiang,ZHOU Ziqiang. Landslide induced by over-irrigation in loess platform areas in Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2004,15(3):43 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2004.03.010

    [15]

    赵超英,刘晓杰,张勤,等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版),2019,44(7):996 − 1007. [ZHAO Chaoying,LIU Xiaojie,ZHANG Qin,et al. Research on loess landslide identification,monitoring and failure mode with InSAR technique in Heifangtai,Gansu[J]. Geomatics and Information Science of Wuhan University,2019,44(7):996 − 1007. (in Chinese with English abstract)

    [16]

    许强,彭大雷,何朝阳,等. 突发型黄土滑坡监测预警理论方法研究—以甘肃黑方台为例[J]. 工程地质学报,2020,28(1):111 − 121. [XU Qiang,PENG Dalei,HE Chaoyang,et al. Theory and method of monitoring and early warning for sudden loess landslide:A case study at Heifangtai Terrace[J]. Journal of Engineering Geology,2020,28(1):111 − 121. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-038

    [17]

    刘陈伟,蒋亚楠,廖露,等. 黑方台主要形变区的SBAS-InSAR识别与分析[J]. 测绘科学,2022,47(5):56 − 65. [LIU Chenwei,JIANG Yanan,LIAO Lu,et al. Identification and analysis of the main deformation area of Heifangtai Platform with SBAS-InSAR[J]. Science of Surveying and Mapping,2022,47(5):56 − 65. (in Chinese with English abstract) doi: 10.16251/j.cnki.1009-2307.2022.05.008

    [18]

    刘希林,郭梨花. 泥石流易发区灾害可接受程度对比研究—以云南东川和甘肃舟曲为例[J]. 地理科学,2019,39(1):164 − 172. [LIU Xilin,GUO Lihua. Comparisons of the acceptability of debris flow disasters in the hazard-prone areas:Case studies in Dongchuan and Zhouqu[J]. Scientia Geographica Sinica,2019,39(1):164 − 172. (in Chinese with English abstract) doi: 10.13249/j.cnki.sgs.2019.01.019

    [19]

    薛强,张茂省. 延安淹土安滑坡监测预警及变形特征[J]. 西北地质,2018,51(2):220 − 226. [XUE Qiang,ZHANG Maosheng. Monitoring,early warning and deformation characteristics of Yantu’an landslide in Yan’an[J]. Northwestern Geology,2018,51(2):220 − 226. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6248.2018.02.029

    [20]

    孙永亮. 宁夏泾源县矿山地质灾害分布特征及防治建议[J]. 世界有色金属,2022,19:229 − 231. [SUN Yongliang. Distribution characteristics and prevention suggestions of mine geological disasters in Jingyuan County, Ningxia[J]. World Nonferrous Metals,2022,19:229 − 231. (in Chinese with English abstract)

    [21]

    朱建军,胡俊,李志伟,等. InSAR滑坡监测研究进展[J]. 测绘学报,2022,51(10):2001 − 2019. [ZHU Jianjun,HU Jun,LI Zhiwei,et al. Recent progress in landslide monitoring with InSAR[J]. Acta Geodaetica et Cartographica Sinica,2022,51(10):2001 − 2019. (in Chinese with English abstract)

    [22]

    BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. doi: 10.1109/TGRS.2002.803792

    [23]

    KURSAH M B,WANG Y,BAYOH H D,et al. A comparative study on the predictive ability of archived and SBAS-InSAR inventories for landslide susceptibility using frequency ratio model in Western Area,Sierra Leone[J]. Environmental Earth Sciences,2021,80(10):387. doi: 10.1007/s12665-021-09663-x

    [24]

    葛大庆,王艳,郭小方,等. 利用短基线差分干涉纹图集监测地表形变场[J]. 大地测量与地球动力学,2008,28(2):61 − 66. [GE Daqing,WANG Yan,GUO Xiaofang,et al. Surface deformation field monitoring by use of small-baseline differential interferograms stack[J]. Journal of Geodesy and Geodynamics,2008,28(2):61 − 66. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-5942.2008.02.011

    [25]

    聂成顺. 基于InSAR和光学遥感的会东县滑坡隐患识别研究[D]. 北京: 中国地质大学(北京), 2021

    NIE Chengshun. Recognition for potential landslides in Huidong County based on InSAR and optical remote sensing[D]. Beijing: China University of Geosciences (Beijing), 2021. (in Chinese with English abstract)

  • 加载中

(10)

计量
  • 文章访问数:  1037
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2022-11-01
修回日期:  2023-01-04
录用日期:  2023-01-29
刊出日期:  2023-03-15

目录